Citation: WANG Jin-Qiu, LIU Peng-Fei, LI Yan-Yan, WU Li-Ming. Synthesis, Crystal Structure, and Optical Property of Zero-dimensional Quaternary Thioborate: Ba9B3GaS15[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1860-1867. doi: 10.14102/j.cnki.0254-5861.2011-1236 shu

Synthesis, Crystal Structure, and Optical Property of Zero-dimensional Quaternary Thioborate: Ba9B3GaS15

  • Corresponding author: LI Yan-Yan, liyanyan1120@fjirsm.ac.cn
  • Received Date: 8 April 2016
    Accepted Date: 6 May 2016

    Fund Project: National Natural Science Foundation of China 21233009, 21225104, 91422303, 21301175 and 21171168

Figures(6)

  • A new zero-dimensional (0D) thioborate Ba9B3GaS15 has been discovered by conventional high-temperature solid-state reaction. The compound crystallizes in orthorhombic space group Pbca with a=8.4759(8), b=22.266(2), c=31.426(3)Å, V=5931(2)Å3, Z=8, Mr=1819.11, Dc=4.075 g/cm3, μ=13.684 mm-1, F(000)=6320, S=1.034, (Δρ)max=5.039, (Δρ)min=-5.409 e/Å3, the final R=0.0362 and wR=0.1053 for 19243 observed reflections with I>2σ(I). The structure is constructed by discrete [BS3]3- trigonal planes and isolated [GaS4]5- tetrahedra with Ba2+ and isolated S2- filled among them. The UV-Vis-near-IR spectrum reveals a wide band gap of 3.15 eV that agrees with the electronic structure calculation.
  • 加载中
    1. [1]

      Chung D. Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M. G. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications[J]. Science, 2000,287:1024-1027. doi: 10.1126/science.287.5455.1024

    2. [2]

      Lin Z. S, Chen L, Wang L. M, Zhao J. T, Wu L. M. A promising mid-temperature thermoelectric material candidate: Pb/Sn-codoped In4PbxSnySe3[J]. Adv. Mater, 2013,25:4800-4806. doi: 10.1002/adma.v25.34

    3. [3]

      Yu P, Wu L. M, Chen L. PbMnIn2S5: synthesis, structure, and properties[J]. Inorg. Chem, 2013,52:724-728. doi: 10.1021/ic3018584

    4. [4]

      Poudeu P. F. P, Takas N, Anglin C, Eastwood J, Rivera A. FexPb4-xSb4Se10: a new class of ferromagnetic semiconductors with quasi 1D {Fe2Se10} ladders[J]. J. Am. Chem. Soc, 2010,132:5751-5760. doi: 10.1021/ja910545e

    5. [5]

      (a) Wu X. T, Chen L.Vol. Eds. Structure-property Relationships in Non-linear Optical Crystals. I. The UV-Vis Region. In Struct. Bonding (Berlin); Mingos D. M. P.Series Ed.; Springer: New York, 2012, Vol. 144. (b) Wu, X. T.; Chen, L. Vol. Eds. Structure-property Relationships in Nonlinear Optical Crystals. II. The IR Region. In Struct. Bonding (Berlin); Mingos, D. M. P., Series Ed.; Springer: New York, 2012, Vol. 145.

    6. [6]

      Chung I, Kanatzidis M. G. Metal chalcogenides: a rich source of nonlinear optical materials[J]. Chem. Mater, 2014,26:849-869. doi: 10.1021/cm401737s

    7. [7]

      (a) Jayaraman A, Narayanamurti V, Kasper H. M, Chin M. A, Maines R. G.Pressure-dependence of energy-gap in some I-III-VI2 compound semiconductors. Phys. Rev. B, 1976, 14: 3516-3519. (b) Harasaki, A.; Kato, K. New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2. Jpn. J. Appl. Phys, 1997, 36: 700-703. (c) Catella, G. C.; Shiozawa, L. R.; Hietanen, J. R.; Eckardt, R. C.; Route, R. K.; Feigelson, R. S.; Cooper, D. G.; Marquardt, C. L. Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals. Appl. Opt, 1993, 32: 3948-3951.

    8. [8]

      (a) Lin X. S, Zhang G, Ye N.Growth and characterization of BaGa4S7: a new crystal for mid-IR nonlinear optics. Cryst. Growth Des, 2009, 9: 1186-1189. (b) Yao, J. Y.; Mei, D. J.; Bai, L.; Lin, Z. S.; Yin, W. L.; Fu, P. Z.; Wu, Y. C. BaGa4Se7: a new congruent-melting IR nonlinear optical material. Inorg. Chem, 2010, 49: 9212-9216.

    9. [9]

      Chen M. C, Wu L. M, Lin H, Zhou L. J, Chen L. Disconnection enhances the second harmonic generation response: synthesis and characterization of Ba23Ga8Sb2S38[J]. J. Am. Chem. Soc, 2012,134:6058-6060. doi: 10.1021/ja300249n

    10. [10]

      Lin H, Zhou L. J, Chen L. Sulfides with strong nonlinear optical activity and thermochromism: ACd4Ga5S12 (A = K, Rb, Cs)[J]. Chem. Mater, 2012,24:3406-3414. doi: 10.1021/cm301550a

    11. [11]

      Chen M. C, Li L. H, Chen Y. B, Chen L. In-phase alignments of asymmetric building units in Ln4GaSbS9 (Ln = Pr, Nd, Sm, Gd-Ho) and their strong nonlinear optical responses in middle IR[J]. J. Am. Chem. Soc, 2011,133:4617-4624. doi: 10.1021/ja1111095

    12. [12]

      Li Y. Y, Liu P. F, Hu L, Chen L, Lin H, Zhou L. J, Wu L. M. Strong IR NLO material Ba4MGa4Se10Cl2: highly improved laser damage threshold via dual ion substitution synergy[J]. Adv. Opt. Mater, 2015,3:957-966. doi: 10.1002/adom.201500038

    13. [13]

      Liu B. W, Zeng H. Y, Zhang M. J, Fan Y. H, Guo G. C, Huang J. S, Dong Z. C. Syntheses, structures, and nonlinear-optical properties of metal sulfides Ba2Ga8MS16 (M = Si, Ge)[J]. Inorg. Chem, 2015,54:976-981. doi: 10.1021/ic502362f

    14. [14]

      Li Y. Y, Li B. X, Zhang G, Zhou L. J, Lin H, Shen J. N, Zhang C. Y, Chen L, Wu L. M. Syntheses, characterization, and optical properties of centrosymmetric Ba3(BS3)1.5(MS3)0.5 and noncentrosymmetric Ba3(BQ3)(SbQ3)[J]. Inorg. Chem, 2015,54:4761-4767. doi: 10.1021/acs.inorgchem.5b00189

    15. [15]

      (a) Sasaki, T.; Takizawa, H.; Takeda, T.; Endo, T. High-pressure synthesis of a new calcium thioborate, CaB2S4. Mater. Res. Bull. 2003, 38, 33−39. (b) Püttmann, C.; Hamann, W.; Krebs, B. Preparation and crystal structures of TlBS2 and SrB2S4-4 membered B2S2 rings in thioborates. Eur. J. Solid State Inorg. Chem. 1992, 29, 857−872. (c) Hammerschmidt, A.; Doch, M.; Wulff, M.; Krebs, B. BaB2S4: the first non-oxidic chalcogenoborate with boron in a trigonal-planar and tetrahedral coordination. Z. Anorg. Allg. Chem. 2002, 628, 2637−2640.

    16. [16]

      Hammerschmidt A, Koster C, Kuper J, Lindemann A, Krebs B. Novel alkaline earth metal chalcogenoborates: syntheses and crystal structures of Sr4.2Ba2.8(BS3)4S and Ba7(BSe3)4Se[J]. Z. Anorg. Allg. Chem, 2001,627:1253-1258. doi: 10.1002/(ISSN)1521-3749

    17. [17]

      (a) Sheldrick, G. M. SHELXS97 Program for Solution of Crystal Structures, 1997.(b) Sheldrick G. M.Program for the refinement of crystal structures, 1997.

    18. [18]

      Spek A. L. J. Single-crystal structure validation with the program PLATON[J]. Appl. Crystallogr, 2003,36:7-13. doi: 10.1107/S0021889802022112

    19. [19]

      Kortüm G, Lohr J. E.Reflectance Spectroscopy: Principles, Methods, Applications. Springer-Verlag: New York, 1969.

    20. [20]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    21. [21]

      Blöchl P. E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50:17953-17979. doi: 10.1103/PhysRevB.50.17953

    22. [22]

      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59:1758-1775.  

    23. [23]

      Eisenmann B, Jakowski M, Schafer H. Ba5(GaS4)2: the 1st ortho-thiogallate(III)[J]. Z. Naturforsch. B, 1984,39:27-30.

    24. [24]

      Kim Y, Martin S. W, Ok K. M, Halasyamani P. S. Synthesis of the thioborate crystal ZnxBa2B2S5+x (x ≈ 0.2) for second order nonlinear optical applications[J]. Chem. Mater, 2005, 2005,17:2046-2051.  

    25. [25]

      Royle M, Cho J, Martin S. W. Raman spectroscopy studies of xNa2S-(1-x)B2S3 glasses and polycrystals[J]. J. Non-Cryst. Solids, 2001,279:97-109. doi: 10.1016/S0022-3093(00)00344-6

    26. [26]

      Kuchinke J, Jansen C, Lindemann A, Krebs B. Syntheses and crystal structures of the novel ternary thioborates Na3BS3, K3BS3, and Rb3BS3[J]. Z. Anorg. Allg. Chem, 2001,627:896-902. doi: 10.1002/(ISSN)1521-3749

    27. [27]

      Kim Y, Martin S. W. Synthesis and crystal structure of barium thioborate Ba7(BS3)4S[J]. Inorg. Chem, 2004,43:2773-2775. doi: 10.1021/ic035454m

    28. [28]

      (a) Godby, R. W.; Schlüter, M.; Sham, L. J. Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B 1987, 36, 6497–6500; (b) Okoye, C. M. I. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. Condens. Matter. 2003, 15, 5945–5958.

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    8. [8]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    18. [18]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    19. [19]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(0)
  • Abstract views(7280)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return