Citation: CHEN Yan-Chun, LIU Peng-Fei, CHEN Ling, WU Li-Ming. Thermoelectric Properties of Ag-doped In4Se2.95 Polycrystalline Compounds[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1868-1875. doi: 10.14102/j.cnki.0254-5861.2011-1224 shu

Thermoelectric Properties of Ag-doped In4Se2.95 Polycrystalline Compounds

  • Corresponding author: WU Li-Ming, liming_wu@fjirsm.ac.cn
  • Received Date: 30 March 2016

    Fund Project: National Natural Science Foundation of China 91422303, 21225104, 21571020, 21233009, and 21301175

Figures(3)

  • In4Se3-based materials are noticeable n-type thermoelectric materials because of lead-free and intrinsically low lattice thermal conductivity, but the In4Se3-δ crystals (with Se-deficiency, δ) suffer strong anisotropy and cleavage habit. Thus the researches on polycrystalline In4Se3-based materials are of great importance. Herein, we experimentally and theoretically investigated the thermoelectric properties of In4-xSe2.95Agx polycrystalline compounds. Ag occupying the intercalation or In4 site is energetically most favorable in light of the density functional theory calculation. The maximum solubility of Ag (xm) is very low (xm<0.03) and the experimental result indicates that the electrical transport behavior of In4-xSe2.95Agx compounds is not significantly optimized by Ag-dopant. Consequently, a maximum ZT of 0.92 at 723 K is obtained by In3.98Se2.95Ag0.02 compound that represents 15% enhancement over that of the un-doped one which benefits from the slightly enhanced power factor and the reduced total thermal conductivity.
  • 加载中
    1. [1]

      Elsheikh M. H, Shnawah D. A, Sabri M. F. M, Said S. B. M, Hassan M. H, Bashir M. B. A, Mohamad M. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renew. Sust. Energ. Rev, 2014,30:337-355. doi: 10.1016/j.rser.2013.10.027

    2. [2]

      Sales B. C. Smaller is cooler[J]. Science, 2002,295:1248-1249. doi: 10.1126/science.1069895 

    3. [3]

      DiSalvo F. J. Thermoelectric cooling and power generation[J]. Science, 1999,285:703-706. doi: 10.1126/science.285.5428.703

    4. [4]

      Losovyj Y. B, Makinistian L, Albanesi E. A, Petukhov A. G, Liu J, Galiy P, Dveriy O. R, Dowben P. A. The anisotropic band structure of layered In4Se3 (001)[J]. J. Appl. Phys, 2008,104083713. doi: 10.1063/1.3000453

    5. [5]

      Hogg J. H. C, Sutherland H. H, Williams D. J. Crystallographic evidence for the existence of the phases In4Se3 and In4Te3 which contain the homonuclear triatornic cation (In3)5+[J]. Chem. Commun, 1971:1568-1569.  

    6. [6]

      Rhyee J. S, Lee K. H, Lee S. M, Cho E, Kim S. II, Lee E, Kwon Y. S, Shim J. H, Kotliar G. Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals[J]. Nature, 2009,459:965-968. doi: 10.1038/nature08088

    7. [7]

      Zhai Y. B, Zhang Q. S, Jiang J, Zhang T, Xiao Y. K, Yang S. G, Xu G. J. Thermoelectric performance of the ordered In4Se3-In composite constructed by monotectic solidification[J]. J. Mater. Chem. A, 2013,1:8844-8847. doi: 10.1039/c3ta01599h

    8. [8]

      Zhu G. H, Lan Y. C, Wang H, Joshi G, Chen Q, Ren Z. F. Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3-x compounds[J]. Phys. Rev. B, 2011,83115201. doi: 10.1103/PhysRevB.83.115201

    9. [9]

      Rhyee J. S, Cho E, Lee K. H, Lee S. M, Kim S. II, Kim H. S, Kwon Y. S, Kim S. J. Thermoelectric properties and anisotropic electronic band structure on the In4Se3-x compounds[J]. Appl. Phys. Lett, 2009,95212106. doi: 10.1063/1.3266579

    10. [10]

      Kim J. H, Kim M. J, Oh S, Rhyee J. S. Thermoelectric properties of Se-deficient and Pb-/Sn-codoped In4Pb0.01Sn0.03Se3-x polycrystalline compounds[J]. J. Alloys Compd, 2014,615:933-936. doi: 10.1016/j.jallcom.2014.06.196

    11. [11]

      Luo Y. B, Yang J. Y, Liu M, Xiao Y, Fu L. W, Li W. X, Zhang D, Zhang M. Y, Cheng Y. D. Multiple heteroatoms induced carrier engineering and hierarchical nanostructure for high thermoelectric performance of polycrystalline In4Se2.5[J]. J. Mater. Chem. A, 2015,3:1251-1257. doi: 10.1039/C4TA05508J

    12. [12]

      Luo Y. B, Yang J. Y, Li G, Liu M, Xiao Y, Fu L. W, Li W. X, Zhu P. W, Peng J. Y, Gao S. Z, Zhang J. Q. Enhancement of the thermoelectric performance of polycrystalline In4Se2.5 by copper intercalation and bromine substitution[J]. Adv. Energy Mater, 2014,41300599. doi: 10.1002/aenm.201300599

    13. [13]

      Lin Z. S, Chen L, Wang L. M, Zhao J. T, Wu L. M. A promising mid-temperature thermoelectric material candidate: Pb/Sn-codoped In4PbxSnySe3[J]. Adv. Mater, 2013,25:4800-4806. doi: 10.1002/adma.v25.34

    14. [14]

      He S. H, Lin Z. X, Muhammad A. K, Liu P. F, Chen L, Wu L. M. Thermoelectric properties of Ni-substituted polycrystalline In4Se3[J]. Chin. J. Struct. Chem, 2015,34:1217-1223.  

    15. [15]

      Shi X, Cho J. Y, Salvador J. R, Yang J, Wang H. Thermoelectric properties of polycrystalline In4Se3 and In4Te3[J]. Appl. Phys. Lett, 2010,96162108. doi: 10.1063/1.3389494

    16. [16]

      Rhyee J. S, Cho E, Ahn K, Lee K. H, Lee S. M. Thermoelectric properties of bipolar diffusion effect on In4Se3-xTex compounds[J]. Appl. Phys. Lett, 2010,97152104. doi: 10.1063/1.3493269

    17. [17]

      Lim Y. S, Jeong M, Seo W. S, Lee J. H, Park C. H, Sznajder M, Kharkhalis L. Y, Bercha D. M, Yang J. Condenson state and its effects on thermoelectric properties in In4Se3[J]. J. Phys. D: Appl. Phys, 2013,46275304. doi: 10.1088/0022-3727/46/27/275304

    18. [18]

      Ahn K, Cho E, Rhyee J. S, Kim S. II, Lee S. M, Lee H. K. Effect of cationic substitution on the thermoelectric properties of In4-xMxSe2.95 compounds (M = Na, Ca, Zn, Ga, Sn, Pb; x = 0.1)[J]. Appl. Phys. Lett, 2011,99102110. doi: 10.1063/1.3637053

    19. [19]

      Rhyee J. S, Ahn K, Lee K. H, Ji H. S, Shim J. H. Enhancement of the thermoelectric figure-of-merit in a wide temperature range in In4Se3-xCl0.03 bulk crystals[J]. Adv. Mater, 2011,23:2191-2194. doi: 10.1002/adma.v23.19

    20. [20]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    21. [21]

      Perdew J. P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992,45:13244-13249. doi: 10.1103/PhysRevB.45.13244

    22. [22]

      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59:1758-1775.  

    23. [23]

      Bl?chl P. E, Jepsen O, Andersen O. K. Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev. B, 1994,49:16223-16233. doi: 10.1103/PhysRevB.49.16223

    24. [24]

      Gibbs Z. M, Kim H. S, Wang H, Snyder G. J. Band gap estimation from temperature dependent Seebeck measurement-deviations from the 2e.S.maxTmax relation[J]. Appl. Phys. Lett, 2015,106022112. doi: 10.1063/1.4905922

    25. [25]

      Goldsmid H. J, Sharp J. W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements[J]. J. Electron. Mater, 1999,28:869-872. doi: 10.1007/s11664-999-0211-y

    26. [26]

      Lee M. H, Kim K. R, Rhyee J. S, Park S. D, Snyder G. J. High thermoelectric figure-of-merit in Sb2Te3/Ag2Te bulk composites as Pb-free p-type thermoelectric materials[J]. J. Mater. Chem. C, 2015,3:10494-10499. doi: 10.1039/C5TC01623A

    27. [27]

      Kim J. H, Kim M. J, Oh S, Rhyee J. S, Park S. D, Ahn D. Thermoelectric properties and chlorine doping effect of In4Pb0.01Sn0.03Se2.9Clx polycrystalline compounds[J]. Dalton Trans, 2015,44:3185-3189. doi: 10.1039/C4DT03432E

    28. [28]

      May A. F, Toberer E. S, Saramat A, Snyder G. J. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x[J]. Phys. Rev. B, 2009,80125205. doi: 10.1103/PhysRevB.80.125205

  • 加载中
    1. [1]

      HE Su-HuaLIN Zi-XiongMuhammad Ali KhanLIU Peng-FeiCHEN LingWU Li-Ming . Thermoelectric Properties of Ni-substituted Polycrystalline In4Se3. Chinese Journal of Structural Chemistry, 2015, 34(8): 1217-1223. doi: 10.14102/j.cnki.0254-5861.2011-0719

    2. [2]

      ZHAO Xiao-ChuanSUN Bao-ZhenHE ChaoMA Zu-JuLI Qiao-HongWU Ke-Chen . Thermoelectric Properties of the CuGaTe2 Crystal from First-principles Calculations:the Role of Doping and Temperature. Chinese Journal of Structural Chemistry, 2014, 33(10): 1431-1435.

    3. [3]

      Cheng Ying-ZhiSun Xiu-YuXiao Xiao-LingLiu Xiang-FengXue LiHu Zhong-Bo . Effects of doping Fe cations on crystal structure and thermal expansion property of Yb2Mo3O12. Chinese Chemical Letters, 2017, 28(7): 1600-1606. doi: 10.1016/j.cclet.2017.03.002

    4. [4]

      XU Ling-YunMEI XiaoYAN Chun-Hui . Synthesis, Crystal Structure and Photoluminescence Property of Ag(I) with N, N-dimethyl-4-(pyridine-4-yldiazenyl)aniline. Chinese Journal of Structural Chemistry, 2016, 35(3): 355-360. doi: 10.14102/j.cnki.0254-5861.2011-0868

    5. [5]

      WANG Ji-JiangTANG LongHOU Xiang-YangGAO Lou-JunFU FengZHANG Mei-Li . Synthesis, Structure and Electrochemical Property of a New 3D Ag(Ⅰ) Coordination Polymer Constructed by Biphenyl-2,2',4,4'-tetracarboxylate. Chinese Journal of Structural Chemistry, 2014, 33(5): 729-734.

    6. [6]

      XU Cheng-zhiZHENG Mei-qinCHEN KengHU HuiCHEN Xiao-hui . CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel. Journal of Fuel Chemistry and Technology, 2016, 44(08): 943-953.

    7. [7]

      WU HaoWANG YuanZHANG LingKANG Rui-FangWU Wei-Na . Synthesis, Crystal Structure and DNA-Binding Property of Ag(Ⅰ) Complex with 1-(3-Ethylpyrazin-2-yl)ethylidene-4-phenylsemicarbazide. Chinese Journal of Inorganic Chemistry, 2018, 34(6): 1137-1142. doi: 10.11862/CJIC.2018.108

    8. [8]

      XIN Xiao-DongWEI Heng-WeiZHAO Wen-HuiLIU Zhong-ShiLI Wen-XianJIAO HuanJING Xi-Ping . Doping and Replacing Effects on the Luminescent Properties of SrAl12O19:Mn4+ Red Phosphor. Chinese Journal of Inorganic Chemistry, 2016, 32(7): 1199-1206. doi: 10.11862/CJIC.2016.169

    9. [9]

      Hua ZhengshenZhang XinFeng XiaojingWang XiaoranHe JunWang XinPeng Huifen . Improved electrochemical properties in the Li3Fe2(PO4)3 by titanium and vanadium doping. Chinese Chemical Letters, 2019, 30(3): 792-796. doi: 10.1016/j.cclet.2018.11.004

    10. [10]

      LU Jiu-FuSHI JuanZHENG NanGUO Xiao-HuaGE Hong-Guang . Synthesis, Crystal Structure and Luminescent Property of a Ag(Ι) Coordination Polymer with a 3D Sandwich-like Framework. Chinese Journal of Structural Chemistry, 2016, 35(2): 319-325. doi: 10.14102/j.cnki.0254-5861.2011-0814

    11. [11]

      LU Jiu-FuSHI JuanZHENG NanGUO Xiao-HuaGE Hong-Guang . Synthesis, Crystal Structure and Luminescent Property of a Ag(Ι) Coordination Polymer with a 3D Sandwich-like Framework. Chinese Journal of Structural Chemistry, 2016, 35(2): 319-325. doi: 10.14102/j.cnki.0254-5861.2011-0814

    12. [12]

      CHENG LinYANG Jing-HuaZHAI Qing-ChaoZHANG Qing-Song . A Chiral Ag(Ⅰ) Coordination Polymer Based on an α, α-L-Diaryl Prolinol-Pyridine Derivative: Circular Dichroism, SHG Response and Luminescent Property. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 361-367. doi: 10.11862/CJIC.2020.013

    13. [13]

      LU Jiu-FuGE Hong-GuangSHI Juan . Synthesis, Crystal Structure and Fluorescence Property of the Ag(Ⅰ) Coordination Polymer Constructed by 21D [Ag(1,3-BIP)(PMA)0.5]nn- Layers and 1D [Ag(1,3-BIP)(H2O)]nn+ Chains. Chinese Journal of Structural Chemistry, 2015, 34(8): 1259-1264. doi: 10.14102/j.cnki.0254-5861.2011-0612

    14. [14]

      HAN Zhi-ZhongWEI Li-YuanGUO YePAN Hai-BoCHEN Jian-ZhongCHEM Nai-Sheng . Synthesis and Photovoltaic Charateristics of Ag-Ag2Se Sensitized ZnO Flower-Rod Heterostructures. Chinese Journal of Inorganic Chemistry, 2013, 29(9): 1856-1862. doi: 10.3969/j.issn.1001-4861.2013.00.247

    15. [15]

      YE Shi-YongBAN Hui-ZhaoLI MinSHSO Ming-WangYE YinPAN Shi-Yan . Synthesis of Ternary Compounds Cu0.8Ag1.2S and Cu0.5Ag1.5Se with High Crystallinity at Room Temperature and Characterization with XPS. Chinese Journal of Applied Chemistry, 2008, 25(9): 1101-1103.

    16. [16]

      Wan Xi CHEN Zhu De XU Wen Zhu LI . PHOTOCONDUCTIVITY OF ZINC PHTHALOCYANINE BY C60 DOPING. Chinese Chemical Letters, 1995, 6(5): 429-432.

    17. [17]

      Yue Hua CHEN Bao Fang JIN Ping WANG Guo Lin GUO . INFLUENCE OF DOPING COMPONENT ON THE SOL-GEL PROCESS. Chinese Chemical Letters, 1995, 6(6): 527-530.

    18. [18]

      Hong Jin DUAN Hong Ju FANG Yan Qing XU Tong Hui ZHOU Hua CHI Yun WU You Xuan XU . Analysis of Beta-blockers in Doping Control. Chinese Chemical Letters, 1990, 1(3): 231-234.

    19. [19]

      U. KurtanMd. AmirA. Baykal . A Fe3O4@Nico@Ag nanocatalyst for the hydrogenation of nitroaromatics. Chinese Journal of Catalysis, 2015, 36(5): 705-711. doi: 10.1016/S1872-2067(14)60316-8

    20. [20]

      Qing Long JIANG Xiang Kai FU Zhu Jun CHEN . The Synthesis of 1-Ethyl-1'-(4-vinylbenzyl)-4, 4'-bipyridinium Chloride and Iodide and its Electrochromic Property. Chinese Chemical Letters, 2006, 17(11): 1447-1450.

Metrics
  • PDF Downloads(0)
  • Abstract views(3002)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return