Citation: YE Ying-Xiang, ZHENG Jian-Hong, ZENG Yan-Ting, LIN Yan-Li, ZHANG Liu-Qin, WANG Li-Hua, ZHANG Zhang-Jing, XIANG Sheng-Chang. Syntheses, Crystal Structures and Luminescent Properties of Two New Zinc(II) Complexes Based on Bifunctional Ligand[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1944-1952. doi: 10.14102/j.cnki.0254-5861.2011-1217 shu

Syntheses, Crystal Structures and Luminescent Properties of Two New Zinc(II) Complexes Based on Bifunctional Ligand

  • Corresponding author: WANG Li-Hua, lhwang@fjnu.edu.cn XIANG Sheng-Chang, scxiang@fjnu.edu.cn
  • Received Date: 25 March 2016
    Accepted Date: 17 May 2016

    Fund Project: the National Natural Science Foundation of China 21207018, 21273033, 21203024 and 21573042Fujian Science and Technology Department 2014J06003, 2014H6007 and 2016J01046college students' innovative training program 201510394008, 201510394055S. X. gratefully acknowledges the supports from Recruitment Program of Global Young Experts, Program for New Century Excellent Talents in University (NCET-10-0108), and the Award ‘Minjiang Scholar Program’ in Fujian Province  

Figures(6)

  • By using solvothermal method, two novel coordination polymers based on 4-(4-carboxyphen-yl)-1,2,4-triazole (Hcpt) and Zn(II) cations,[Zn(cpt)(OH)]n·nH2O (FJU-32) and[Zn(cpt)(atrz)]n (FJU-33) (Hatrz=3-amino-1,2,4-triazolate), were synthesized and characterized by single-crystal X-ray diffraction analyses, elemental analyses, FT-IR and powder X-ray diffraction. FJU-32 crystallizes in monoclinic, space group P21/c with a=3.7441(3), b=23.0384(19), c=11.8562(10)Å, β=99.069(8)°, V=1009.91(15)Å3, Dc=1.898 g/cm3, C9H9N3O4Zn, Mr=288.57, F(000)=916, μ(Mo)=2.439 mm-1, Z=4, R=0.0600 and wR=0.1306 for 2412 observed reflections (I>2σ(I)), and R=0.0704 and wR=0.1349 for all data. FJU-33 crystallizes in monoclinic space group P21/c with a=12.7483(5), b=9.9922(3), c=9.8403(3)Å, β=100.756(4)°, V=1231.47(7)Å3, Dc=1.816 g/cm3, C11H9N7O2Zn, Mr=336.62, F(000)=680, μ(CuKα)=2.957 mm-1, Z=4, R=0.0478 and wR=0.1184 for 2466 observed reflections (I>2σ(I)), and R=0.0687 and wR=0.1309 for all data. In FJU-32, Zn(II) is coordinated to three μ3-OH groups forming an unprecedented 1D zigzag-like double chain, and the 1D double chains are connected to four neighbouring double chains by the cpt ligands to form an extended 3D porous coordination polymer. In FJU-33, the adjacent[Zn(atrz)] 2D layers are further connected by the cpt ligands via Zn-O coordinated bonds and neighboring interlayer hydrogen-bonding interactions to give rise to an overall 3D pillared layer structure. The neutron triazole group of the cpt ligand has weaker coordination ability than the triazolate anion of atrz ligand. Furthermore, FJU-32 and FJU-33 display high thermal stability up to 300℃, and the solid state fluorescence reveals that two new complexes are potential optical materials.
  • 加载中
    1. [1]

      (a) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674; (b) Sato, H.; Kosaka, W.; Matsuda, R.; Hori, A.; Hijikata, Y.; Belosludov, R. V.; Sakaki, S.; Takata, M.; Kitagawa, S. Self-accelerating CO sorption in a soft nanoporous crystal. Science 2014, 343, 167-170; (c) Férey, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380-1399.

    2. [2]

      El-Kaderi H. M, Hunt J. R, Mendoza-Cortés J. L, C?té A. P, Taylor R. E, O’Keeffe M, Yaghi O. M. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007,316:268-272. doi: 10.1126/science.1139915

    3. [3]

      (a) O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675-702; (b) Guillerm, V.; Kim, D.; Eubank, J. F.; Luebke, R.; Liu, X.; Adil, K.; Lah, M. S.; Eddaoudi, M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6141-6172.

    4. [4]

      (a) Xiang, S. C.; Zhang, Z. J.; Zhao, C. G.; Hong, K.; Zhao, X.; Ding, D. R.; Xie, M. H.; Wu, C. D.; Das, M. C.; Gill, R.; Thomas, K. M.; Chen, B. L. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nat. Commun. 2011, 2, 204-210; (b) Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954-962; (c) Zhang, Z.; Yao, Z. Z.; Xiang, S.; Chen, B. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ. Sci. 2014, 7, 2868-2899; (d) Shen, Y. C.; Li, Z. Y.; Wang, L. H.; Ye, Y. X.; Liu, Q.; Ma, X. L.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. Cobalt-citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. J. Mater. Chem. A 2015, 3, 593-599; (e) Chen, Y.; Li, Z. Y.; Liu, Q.; Shen, Y. C.; Wu, X. Z.; Xu, D. D.; Ma, X. L.; Wang, L. H.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. Microporous metal-organic framework with lantern-like dodecanuclear metal coordination cages as nodes for selective adsorption of C2/C1 mixtures and sensing of nitrobenzen. Cryst. Growth Des. 2015, 15, 3847-3852; (f) Liu, L. Z.; Ye, Y. X.; Yao, Z. Z.; Zhang, L. Q.; Li, Z. Y.; Wang, L. H.; Ma, X. L.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. A hierarchically porous metal-organic framework from semirigid ligand for gas adsorption. Chin. J. Chem. 2016, 34, 215-219; (g) Yao, Z.; Zhang, Z.; Liu, L.; Li, Z.; Zhou, W.; Zhao, Y.; Han, Y.; Chen, B.; Krishna, R.; Xiang, S. Extraordinary separation of acetylene-containing mixtures with microporous metal-organic frameworks with open O donor sites and tunable robustness through control of the helical chain secondary building units. Chem.-Eur. J. 2016, 22, 5676-5683; (h) Song, C.; Jiao, J.; Lin, Q.; Liu, H.; He, Y. C2H2 adsorption in three isostructural metal-organic frameworks: boosting C2H2 uptake by rational arrangement of nitrogen sites. Dalton Trans. 2016, 45, 4563-4569.

    5. [5]

      (a) Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. MOFs as proton conductors-challenges and opportunities. Chem. Soc. Rev. 2014, 43, 5913-5932; (b) Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 2013, 135, 7438-7441; (c) Ye, Y.; Zhang, L.; Peng, Q.; Wang, G. E.; Shen, Y.; Li, Z.; Wang, L.; Ma, X.; Chen, Q. H.; Zhang, Z.; Xiang, S. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J. Am. Chem. Soc. 2015, 137, 913-918; (d) Su, X.; Yao, Z.; Ye, Y.; Zeng, H.; Xu, G.; Wu, L.; Ma, X.; Chen, Q. H.; Wang, L.; Zhang, Z.; Xiang, S. 40-Fold enhanced intrinsic proton conductivity in coordination polymers with the same proton-conducting pathway by tuning metal cation nodes. Inorg. Chem. 2016, 55, 983-986; (e) Ye, Y.; Wu, X.; Yao, Z.; Wu, L.; Cai, Z.; Wang, L.; Ma, X.; Chen, Q. H.; Zhang, Z.; Xiang, S. Metal-organic frameworks with large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 ℃. J. Mater. Chem. A 2016, 4, 4062-4070.

    6. [6]

      Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev., 2014,43:6011-6061. doi: 10.1039/C4CS00094C

    7. [7]

      He Y, Li B, O'Keeffe M, Chen B. Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units[J]. Chem. Soc. Rev., 2014,43:5618-5656. doi: 10.1039/C4CS00041B

    8. [8]

      (a) Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 2013, 135, 7660-7667; (b) He, C. T.; Tian, J. Y.; Liu, S. Y.; Ouyang, G.; Zhang, J. P.; Chen, X. M. A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chem. Sci. 2013, 4, 351-356.

    9. [9]

      (a) Savard, D.; Lin, P. H.; Burchell, T. J.; Korobkov, I.; Wernsdorfer, W.; Clérac, R.; Murugesu, M. Two-dimensional networks of lanthanide cubane-shaped dumbbells. Inorg. Chem. 2009, 48, 11748-11754; (b) Aharen, T.; Habib, F.; Korobkov, I.; Burchell, T. J.; Guillet-Nicolas, R.; Kleiz, F.; Murugesu, M. Novel Co-based metal-organic frameworks and their magnetic properties using asymmetrically binding 4-(4?-carboxyphenyl)-1,2,4-triazole. Dalton Trans. 2013, 42, 7795-7802; (c) Holmberg, R. J.; Kay, M.; Korobkov, I.; Kadantsev, E.; Boyd, P. G.; Aharen, T.; Desgreniers, S.; Woo, T. K.; Murugesu, M. An unprecedented CoII cuboctahedron as the secondary building unit in a Co-based metal-organic framework. Chem. Commun. 2014, 50, 5333-5335.

    10. [10]

      (a) Ye, Y. X.; Xiong, S. S.; Wu, X. N.; Zhang, L. Q.; Li, Z. Y.; Wang, L. H.; Ma, X. L.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. Microporous metal-organic framework stabilized by balanced multiple host-counter anion hydrogen-bonding interactions for high-density CO2 capture at ambient conditions. Inorg. Chem. 2016, 55, 292-299; (b) Chen, D. M.; Ma, J. G.; Cheng, P. Solvent-induced secondary building unit (SBU) variations in a series of Cu(II) metal-organic frameworks derived from a bifunctional ligand. Dalton Trans. 2015, 44, 8926-8931; (c) Chen, D. M.; Zhang, X. P.; Shi, W.; Cheng, P. Microporous metal-organic framework based on a bifunctional linker for selective sorption of CO2 over N2 and CH4. Inorg. Chem. 2015, 54, 5512-5518; (d) Chen, D. M.; Tian, J. Y.; Fang, S. M.; Liu, C. S. Two isomeric Zn(II)-based metal-organic frameworks constructed from a bifunctional triazolate-carboxylate tecton exhibiting distinct gas sorption behaviors. CrystEngComm. 2016, 18, 2579-2584.

    11. [11]

      (a) Song, J. F.; Zhou, R. S.; Zhang, J.; Xu, C. Y.; Li, Y. B.; Wang, B. B. Three new cpt-metal complexes displaying 0D, 1D, and 3D topology structures. Z. Anorg. Allg. Chem. 2011, 637, 589-595; (b) Wang, L.; Ye, Y.; Zhang, L.; Chen, Q.; Ma, X.; Zhang, Z.; Xiang, S. A 3D-diamond-like metal-organic framework: crystal structure, nonlinear optical effect and high thermal stability. Inorg. Chem. Commun. 2015, 60, 19-22; (c) Yang, L. B.; Wang, H. C.; Fang, X. D.; Chen, S. J.; Xu, Q. Q.; Zhu, A. X.; Yang, Z. A series of Zn(II) and Cd(II) coordination compounds based on 4-(4H-1,2,4-triazol-4-yl) benzoic acid: synthesis, structure and photoluminescence properties. CrystEngComm. 2016, 18, 130-142.

    12. [12]

      (a) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001-1033; (b) Huang, C.; Ji, F.; Liu, L.; Li, N.; Li, H.; Wu, J.; Hou, H.; Fan, Y. Seven dicarboxylate-based coordination polymers with structural varieties and different solvent resistance properties derived from the introduction of small organic linkers. CrystEngComm. 2014, 16, 2615-2625.

    13. [13]

      Dolomanov A. V, Bourhis L. J, Gildea R. J, Howard J. A. K, Puschmann H. OLEX2: a complete structure solution refinement and analysis program. J[J]. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    14. [14]

      Palatinus L, Chapuis G. SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J[J]. Appl. Crystallogr., 2007,40:786-790. doi: 10.1107/S0021889807029238

    15. [15]

      Sheldrick G. M. A short history of SHELX. Acta Crystallogr[J]. Sect. A: Found. Crystallogr., 2008.

    16. [16]

      (a) Ling, Y.; Yang, F.; Deng, M.; Chen, Z.; Liu, X.; Weng, L.; Zhou, Y. Novel iso-reticular Zn(ii) metal-organic frameworks constructed by trinuclear-triangular and paddle-wheel units: synthesis, structure and gas adsorption. Dalton Trans. 2012, 41, 4007-4011; (b) Su, Z.; Bai, Z. S.; Fan, J.; Xu, J.; Sun, W. Y. Synthesis and characterization of 3d-3d homo- and heterometallic coordination polymers with mixed ligands. Cryst. Growth Des. 2009, 9, 5190-5196.

    17. [17]

      Delgado-Friedrichs O, O’Keeffe M. Identification of and symmetry computation for crystal nets[J]. Acta Crystallogr., 2003.

    18. [18]

      Jiang Z. Q, Jiang G. Y, Wang F, Zhao Z, Zhang J. Controlling state of breathing of two isoreticular microporous metal-organic frameworks with triazole homologues[J]. Chem.-Eur. J., 2012,18:10525-10529. doi: 10.1002/chem.v18.34

    19. [19]

      Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. G r o w t h D e s . 2 0 1 4 , 1 4 , 3 5 7 6 - 3 5 8 6 .

    20. [20]

      Song Z, Gao H, Li G, Yu Y, Shi Z, Feng S. Influence of noncovalent intermolecular interactions on crystal packing: syntheses and crystal structures of three layered Zn(II)/1,2,4-triazole/carboxylate coordination polymers[J]. CrystEngComm., 2009,11:1579-1584. doi: 10.1039/b901445d

    21. [21]

      (a) Jia, L. N.; Hou, L.; Wei, L.; Jing, X. J.; Liu, B.; Wang, Y. Y.; Shi, Q. Z. Five sra topological Ln(III)-MOFs based on novel metal-carboxylate/Cl chain: structure, near-infrared luminescence and magnetic properties. Cryst. Growth Des. 2013, 13, 1570-1576; (b) Huang, S. Y.; Li, J. Q.; Wu, X. L.; Zhang, X. M.; Luo, M. B.; Luo, F. A new acrylamide MOF with sra net showing an uncommon eight-fold interpenetration. Inorg. Chem. Commun. 2014, 44, 29-31.

    22. [22]

      Gao J, Wang N, Xiong X, Chen C, Xie W, Ran X, Long Y, Yue S, Liu Y. Syntheses, structures, and photoluminescent properties of a series of zinc(II)-3-amino-1,2,4-triazolate coordination polymers constructed by varying carboxylate anions[J]. CrystEngComm., 2013,15:3261-3270. doi: 10.1039/c3ce00049d

    23. [23]

      (a) He, K. H.; Li, Y. W.; Chen, Y. Q.; Song, W. C.; Bu, X. H. Employing zinc clusters as SBUs to construct (3,8) and (3,14)-connected coordination networks: structures, topologies, and luminescence. Cryst. Growth Des. 2012, 12, 2730-2735; (b) Li, L. J.; Qin, C.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Liu, P. J. Synthesis and characterization of two self-catenated networks and one case of pcu topology based on the mixed ligands. CrystEngComm. 2012, 14, 4205-4209.

    24. [24]

      Cui Y, Yue Y, Qian G, Chen B. L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012,112:1126-1162. doi: 10.1021/cr200101d

  • 加载中
    1. [1]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    2. [2]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    6. [6]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    7. [7]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    10. [10]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    18. [18]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    19. [19]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(0)
  • Abstract views(5713)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return