Citation: WANG Qing, MA Cheng-Bing, CHEN Hui, HUANG De-Guang, CHEN Chang-Neng. Five-heterocyclic-biphosphinesubstituted Fe-only Hydrogenase Mimic: Synthesis, Characterization and Properties[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1972-1979. doi: 10.14102/j.cnki.0254-5861.2011-1211 shu

Five-heterocyclic-biphosphinesubstituted Fe-only Hydrogenase Mimic: Synthesis, Characterization and Properties

  • Corresponding author: CHEN Chang-Neng, ccn@fjirsm.ac.cn
  • Received Date: 22 March 2016
    Accepted Date: 2 June 2016

    Fund Project: the NNSFC 21231003 and 21203195

Figures(4)

  • A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe2(CO)5]2(PTP) (1), has been synthesized at room temperature. 1·H2O crystallizes in triclinic system, space group P1, with a=11.5897(4), b=13.6156(4), c=18.0333(6)Å, α=76.306(3), β=72.742(3), γ=68.939(3)°, V=2508.84(14)Å3, Dc=1.570 g/cm3, Z=2, Mr=1186.37, F(000)=1204, the final R=0.0748, and wR=0.2012. In the tetranuclear complex 1·H2O, each[2Fe2S] butterfly unit is attached to one P atom of the diphosphine bridge and exhibits a square-pyramidal geometry. Complex 1 was characterized by elemental analysis, IR spectra, UV-vis absorption spectra, 1H-NMR and 31P-NMR. The cyclic voltammetry behavior of compound 1 was investigated as well.
  • 加载中
    1. [1]

      Lawrence J. D, Li H, Rauchfuss T. B, Benard M, Rohmer M. M. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics[J]. Angew. Chem., Int. Ed., 2001,40:1768-1771. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Ott S, Kritikos M, Akermark B, Sun L C, Lomoth R. A biomimetic pathway for hydrogen evolution from a model of the iron hydrogenase active site[J]. Angew. Chem., Int. Ed., 2004,43:1006-1009. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Felton G. A. N, Mebi C. A, Petro B. J, Vannucci A. K, Evans D. H, Glass R. S, Lichtenberger D. L. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of[J]. J. Organomet. Chem., 2009,694:2681-2699. doi: 10.1016/j.jorganchem.2009.03.017

    4. [4]

      Baltazar C. S. A, Marques M. C, Soares C. M, DeLacey A. M, Pereira I. A. C, Matias P. M. Nickel-iron-selenium hydrogenases-an overview[J]. Eur. J. Inorg. Chem., 2011,7:948-962.

    5. [5]

      Frey, M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem. 2002, 2-3, 153-160.

    6. [6]

      Peters J. W, Lanzilotta W. N, Lemon B. J, Seefeldt L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282:1853-1858. doi: 10.1126/science.282.5395.1853

    7. [7]

      Peters J. W. Structure and mechanism of iron-only hydrogenases[J]. Curr. Opin. Struc. Biol., 1999,9:670-676. doi: 10.1016/S0959-440X(99)00028-7

    8. [8]

      Huo F. W, Hou J, Chen G. C, Guo D. M, Peng X. J. [FeFe]-Hydrogen models: overpotential control for electrocatalytic H2 production by tuning of the ligand π-acceptor ability. Eur. J[J]. Inorg. Chem., 2010,25:3942-3951.

    9. [9]

      Chong D, Georgakaki I. P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M. P, Darensbourg M. Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships[J]. Dalton Trans., 2003,21:4158-4163.  

    10. [10]

      Schwartz L, Eilers G, Eriksson L, Gogoll A, Lomoth R, Ott S. Iron hydrogenase active site mimic holding a proton and a hydride[J]. Chem. Commun., 2006,5:520-522.  

    11. [11]

      Si G, Wang W. G, Wang H. Y, Tung C. H, Wu L. Z. Facile synthesis and functionality-dependent electrochemistry of Fe-only hydrogenase mimics[J]. Inorg. Chem., 2008,47:8101-8111. doi: 10.1021/ic800676y

    12. [12]

      Gloaguen F, Lawrence J. D, Rauchfuss T. B, Benard M, Rohmer M. M. Bimetallic carbonyl thiolates as functional models for Fe-only hydrogenases[J]. Inorg. Chem., 2002,41:6573-6582. doi: 10.1021/ic025838x

    13. [13]

      Gloaguen F, Lawrence J. D, Rauchfuss T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123:9476-9477. doi: 10.1021/ja016516f

    14. [14]

      Chong D. S, Georgakaki I. P, Mejia-Rodriguez R, Samabria-Chinchilla J, Soriaga M. P, Darensbourg M. Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure /function relationships[J]. Dalton Trans., 2003,21:4158-4163.

    15. [15]

      Capon J. F, Gloaguen F, Schollhammer P, Talarmin J. Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters[J]. J. Electroanal. Chem., 2004,566:241-247. doi: 10.1016/j.jelechem.2003.11.032

    16. [16]

      Song L. C, Yang Z, Bian H. Z, Hu Q. M. Novel single and double diiron oxadithiolates as models for the active site of[J]. Organometallics, 2004,13:3082-3084.

    17. [17]

      Si Y, Charreteur K, Capon J. F, Gloaguen F. Pétillon, F. Y, Schollhammer, P. Talarmin, J. Non-innocent bma ligand in a dissymetrically disubstituted diiron dithiolate related to the active site of the[J]. J. Inorg. Biochem., 2010,104:1038-1042. doi: 10.1016/j.jinorgbio.2010.05.011

    18. [18]

      Cui H. H, Wu N. N, Wang J. Y, Hu M. Q, Wen H. M, Chen C. N. Pyridyl- and pyrimidyl-phosphine-substituted[J]. J. Organomet. Chem., 2014,767:46-53. doi: 10.1016/j.jorganchem.2014.04.026

    19. [19]

      Capon J. F, Gloaguen F, Schollhammer P, Talarmin J. Activation of proton by the two-electron reduction of a di-iron organometallic complex[J]. J. Electroanal. Chem., 2006,595:47-52. doi: 10.1016/j.jelechem.2006.06.005

    20. [20]

      Felton G. A. N, Vannucci A. K, Chen J. Z, Lockett L. T, Okumura N, Petro B. J, Zakai U. I, Evans D. H, Glass R. S, Lichtenberger D. L. Hydrogen generation from weak acids: electrochemical and computational studies of a diiron hydrogenase mimic[J]. J. Am. Chem. Soc., 2007,41:12521-12530.

    21. [21]

      Chen L, Wang M, Gloaguen F, Zheng D. H, Zhang P. L, Sun L. C. Multielectron-transfer templates via consecutive two-electron transformations: iron-sulfur complexes relevant to biological enzymes[J]. Chem. Eur. J., 2012,18:13968-13973. doi: 10.1002/chem.v18.44

    22. [22]

      Chen L, Wang M, Gloaguen F, Zheng D. H, Zhang P. L, Sun L. C. Tetranuclear iron complexes bearing benzenetetrathiolate bridges as four-electron transformation templates and their electrocatalytic properties for proton reduction[J]. Inorg. Chem., 2013,52:1798-1806. doi: 10.1021/ic301647u

    23. [23]

      Kang D. M, Kim S. G, Lee S. J, Park J. K, Park K. M, Shin S. C. Synthesis, characterization, and absorption spectra of metallamacrocycles,[J]. Soc., 2005,9:1390-1394.

    24. [24]

      Sevillano P, Fuhr O, Hampe O, Lebedkin S, Neiss C, Ahlrichs R, Fenske D, Kappes M. M. Synthesis, characterization and quantum mechanical calculations of[J]. J. Inorg. Chem., 2007,33:5163-5167.

    25. [25]

      Stott T. L, Wolf M. O, Patrick B. O. Structural and electronic properties of phosphino(oligothiophene) gold(I) complexes[J]. Inorg. Chem., 2005,3:620-627.  

    26. [26]

      Brown, J. M.; Lucy, A. R. Trans-bis(diphenylphosphino)cyclopropane; a ligand selective for binuclear complexation with ca. 4.5 ? intermetallic separation. J. Organomet. Chem. 1986, 1-2, 241-246.

    27. [27]

      Hourihane R, Gray G, Spalding T, Deeney T. Synthesis and spectroscopic characterisation of compounds with formula[J]. Chem., 2002,642:40-47.

    28. [28]

      Li P, Wang M, He C. J, Li G. H, Liu X. Y, Chen C. N, Akermark B, Sun L. C. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: crystal structures of[J]. J. Inorg. Chem., 2005,12:2506-2513.

    29. [29]

      Messelhauser J, Lorenz I. P, Haug K, Hiller W. Synthesis and structure of the ethenedithiolato complex[J]. Z. Naturforsch Teil. B, 1985,40:1064-1067.

    30. [30]

      Stott T. L, Wolf M. O. Spectroscopic study of phosphine-substituted oligothiophenes[J]. J. Phys. Chem. B, 2004,108:18815-18819. doi: 10.1021/jp047037g

    31. [31]

      Sheldrick, G. M. SHELXS97, Program for the Solution of Crystal Structure. University of G?ttingen, Germany 1997.

    32. [32]

      Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structure. University of G?ttingen, Germany 1997.

    33. [33]

      Zhao X; Georgakaki I. P, Miller M. L, Mejia-Rodriguez R, Chiang C. Y, Darensbourg M. Y. Catalysis of H2/D2 scrambling and other H/D exchange processes by[J]. Inorg. Chem., 2002,15:3917-3928.

    34. [34]

      Ott S, Borgstrom M, Kritikos M, Lomoth R, Bergquist J, Akermark B, Hammarstrom L, Sun L. C. Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: synthesis and photophysical properties[J]. Inorg. Chem., 2004,15:4683-4692.

    35. [35]

      Gloaguen F, Lawrence J. D, Rauchfuss T. B, Benard M, Rohmer M. M. Bimetallic carbonyl thiolates as functional models for Fe-Only hydrogenases[J]. Inorg. Chem., 2002,25:6573-6582.  

    36. [36]

      Gao W. M, Liu J. H, Akermark B, Sun L. C. Bidentate phosphine ligand based Fe2S2-containing macromolecules: synthesis, characterization, and catalytic electrochemical hydrogen production[J]. Inorg. Chem., 2006,23:9169-9171.  

    37. [37]

      Matthews S. L, Heinekey D. M. A carbonyl-rich bridging hydride complex relevant to the Fe-Fe hydrogenase active site[J]. Inorg. Chem., 2010,49:9746-9748. doi: 10.1021/ic1017328

    38. [38]

      Gao W. M, Ekstrom J, Liu J. H, Chen C. N, Eriksson L, Weng L. H, Akermark B, Sun L. H. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46:1981-1991. doi: 10.1021/ic0610278

  • 加载中
    1. [1]

      Peng DIAO Dian Lu JIANG Xiao Li CUI Deng Ping GU Ru Ting TONG Bing ZHONG . Asymmetrical Conductivity of TCNQ Modificd Au/Thiol-Lipid Bilayers in Fe(CN)63-/4-solution. Chinese Chemical Letters, 1999, 10(7): 587-590.

    2. [2]

      Yi Ning ZENG Ning ZHENG Peter G. OSBORNE Yuan Zong LI Wen Bao CHANG Zong Mu WANG . Preparation and Cyclic Voltammetry Characterization Of Cu-dipyridyl Imprinted Polymer. Chinese Chemical Letters, 2002, 13(4): 317-320.

    3. [3]

      Hong ZHANG Xue Qin GUI Yang XU Bao Kang JIN . Cyclic Voltammetry Determination of Epinephrine with a Nano-gold Modified Glassy Carbon Electrode in the Presence of High Concentration Ascorbic Acid. Chinese Chemical Letters, 2002, 13(2): 153-156.

    4. [4]

      Peng DIAO Dian Lu JIANG Xiao Li CUI Deng Ping GU Ru Ting TONG Bing ZHONG . Assessment of Defects and Collapsed Sites in Self-Assembled Alkanethiol Monolayer on Gold by Cyclic Voltammetry and A.C.Impedance. Chinese Chemical Letters, 1998, 9(12): 1115-1118.

    5. [5]

      Xiao Hua XU Chang Jian LIN Jian Hua LU Guang Min YAO Yan Ming LI . A New Sesquiterpene from the Alga Caloglossa Leprieurii. Chinese Chemical Letters, 2002, 13(10): 953-954.

    6. [6]

      Sujit Kumar GuchhaitSubir Paul . Synthesis and characterization of ZnO-Al2O3 oxides as energetic electro-catalytic material for glucose fuel cell. Journal of Fuel Chemistry and Technology, 2015, 43(8): 1004-1010.

    7. [7]

      Xue En JIA Zhi Wei ZHANG Liang TAN You Yu ZHANG Qing Ji XIE Zhi Min HE Shou Zhuo YAO . QCM Detection of Adhesion, Spreading and Proliferation of Human Breast Cancer Cells (MCF-7) on a Gold Surface. Chinese Chemical Letters, 2006, 17(4): 509-512.

    8. [8]

      Xiang Qin LIN Liang Dong FENG . The In-cell iR Compensation Using a Four-electrode System. Chinese Chemical Letters, 2006, 17(5): 703-706.

    9. [9]

      Hai Feng SONG Miao CHEN Yong Min LIANG Ling SHI Guo Sheng HUANG . Synthesis and Characterization of Novel Mercapto-end Ferrocenyl Derivatives with Schiff Base Linkage. Chinese Chemical Letters, 2004, 15(9): 1087-1090.

    10. [10]

      Yan Fang DU Xi Min QI Peng ZHAO Jia Xing LU Ming Yuan HE . Electropolymerization of O-Phenylenediamine in an Ionic Liquid. Chinese Chemical Letters, 2004, 15(9): 1098-1100.

    11. [11]

      Li Ping LU Bao Kang JIN . Voltammetric Studies of the Interaction of Tris (1, 10-phenanthroline) Cobalt (Ⅲ) with Bovine Serum Albumin. Chinese Chemical Letters, 2001, 12(11): 989-992.

    12. [12]

      Chun Sheng MO . The Structural Conversion in Microemulsion Systems of C12H25SO3Na-C4H9OH-C7C16-H2O. Chinese Chemical Letters, 2000, 11(3): 271-274.

    13. [13]

      Xiang Qin LIN Qian MIAO Bao Kang JIN . DNA Immobilization on Nano-Gold Modified Glassy Carbon Electrode. Chinese Chemical Letters, 1999, 10(2): 157-160.

    14. [14]

      Wei Hua YANG Jian Ming WANG Zhi Bin ZHANG Jian Qing ZHANG Chu Nan CAO . Studies on the Electrochemical Characteristics of K2FeO4 Electrode. Chinese Chemical Letters, 2002, 13(8): 761-764.

    15. [15]

      Santos Pereira VivianeNandenha JúlioRamos AndrezzaOliveira Neto Almir . Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell. Journal of Fuel Chemistry and Technology, 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8

    16. [16]

      E LIUAi-Quan JIAQian-Feng ZHANGFang-Fang JIAN . A Double Crown Hexakis[(Di-μ-benzylthio) Nickel] Cluster: Synthesis, Structure and Properties. Chinese Journal of Structural Chemistry, 2022, 41(3): 2203040-2203046. doi: 10.14102/j.cnki.0254-5861.2011-3309

    17. [17]

      JIANG LinLI Zheng-MingGAO Fa-WangWANG Su-Hua . Synthesis and Herbicidal Activity of N-(4'-Substituted pyrimidin-2'-yl)-2-substituted phenoxysulfonylureas. Chinese Journal of Applied Chemistry, 2002, 19(5): 416-419.

    18. [18]

      Zhi Yong Guo Xiang Qin Lin . Ultrafast cyclic voltammetry with asymmetrical potential scan. Chinese Chemical Letters, 2008, 19(1): 85-88. doi: 10.1016/j.cclet.2007.10.057

    19. [19]

      Zheng Yu ZHOU Can Zhu GAO Qing Cun ZHU Fu Ye GAO Fan Zhen KONG . THE DETERMINATION OF GLUCOSE IN URINE BY USING CYCLIC VOLTAMMETRY. Chinese Chemical Letters, 1995, 6(2): 131-134.

    20. [20]

      Hua Liang JIANG Kai Xian CHEN Yun TANG Jian Zhong CHEN Ying LI Qing Mi Wang Quan LI Ru Yun JI Qian Kun ZHUANG . CYCLIC VOLTAMMETRY STUDY ON ANTIMALARIAL MECHANISM OF ARTEMISININ (QINGHAOSU) DERIVATIVES. Chinese Chemical Letters, 1996, 7(7): 623-626.

Metrics
  • PDF Downloads(0)
  • Abstract views(4175)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return