Citation: LI Shao-Dong, LU Li-Ping, SU Feng. A Novel Three-dimensional Mn(II) Coordination Polymer Constructed from Biphenyl-3,3',5,5'-tetracarboxylic Acid and Water[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1920-1928. doi: 10.14102/j.cnki.0254-5861.2011-1180 shu

A Novel Three-dimensional Mn(II) Coordination Polymer Constructed from Biphenyl-3,3',5,5'-tetracarboxylic Acid and Water

  • Corresponding author: LU Li-Ping, luliping@sxu.edu.cn
  • Received Date: 29 February 2016
    Accepted Date: 13 May 2016

    Fund Project: the National Natural Science Foundation of China 21571118

Figures(7)

  • The title Mn(II) coordination polymer, poly{[heptaaqua-(μ4-bi-phenyl-3,3',5,5'-tetracarboxylate)-bimanganese(II)] pentahydrate},[Mn2(bpta)(H2O)7]n·5nH2O (I), is crystallized from a mixture of biphenyl-3,3',5,5'-tetracarboxylic acid (H4bpta) and MnCl2·4H2O in waterethanol under room temperature. Its asymmetric unit consists of one and two halves of crystallographically independent Mn(II) cations, one fully deprotonated H4bpta ligand, seven coordinated water molecules and five solvent water as guest molecules. In I, each Mn(II) atom is octahedrally coordinated by six oxygen atoms from bpta4- anions and coordinated water molecules. In the Mn(II) cations, one half Mn(II) ion of them located at a 2-fold axis generating a trinuclear[Mn3(H2O)2(RCOO)2] linker by μ1,1-O(water) and μ1,3-O,O'(carboxylate) bridges and another half Mn(II) ion with an inversion is a mononuclear linker. These neighbouring trinuclear and mononuclear Mn(II) cations are linked together by biphenyl-3,3',5,5'-tetracarboxylates to form a three-dimensional framework with a (42.84) topology of a (4,4)-connected net, in which the positions of the trinuclear[Mn3(H2O)2(R-COO)2] linker as a 4-connector linking four bpta4- ligands in I reproduce an eagle-shaped arrangement. The polymeric structure exhibits a water channel with an accessible void of 797.1Å3, amounting to 15.7% of the total unit-cell volume. Each of the cavities in the network is occupied by solvent water molecules.
  • 加载中
    1. [1]

      Wu H, Yang J, Su Z. M, Batten S. R, Ma J. F. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology[J]. J. Am. Chem. Soc., 2011,133:11406-11409. doi: 10.1021/ja202303b

    2. [2]

      Gandara F, Furukawa H, Lee S, Yaghi O. M. High methane storage capacity in aluminum metal-organic frameworks[J]. J. Am. Chem. Soc., 2014,136:5271-5274. doi: 10.1021/ja501606h

    3. [3]

      Su F, Lu L. P, Feng S. S, Zhu M. L, Gao Z, Dong Y. Synthesis, structures and magnetic properties in 3d-electron-rich isostructural complexes based on chains with sole syn-anti carboxylate bridges[J]. Dalton. Trans., 2015,44:7213-7222. doi: 10.1039/C5DT00412H

    4. [4]

      Han Z. B, Xiao Z. Z, Hao M, Yuan D. Q, Liu L, Wei N, Yao H. M, Zhou M. Functional hydrogen-bonded supramolecular framework for K+ ion sensing[J]. Cryst. Growth. Des., 2015,15:531-533. doi: 10.1021/cg501259g

    5. [5]

      Horcajada P, Gref R, Baati T, Allan P. K, Maurin G, Couvreur P, Ferey G, Morris R. E, Serre C. Metal-organic frameworks in biomedicine[J]. Chem. Rev., 2012,112:1232-1268. doi: 10.1021/cr200256v

    6. [6]

      Li H. N, Li H. Y, Li L. K, Xu L, Hou K, Zang S. Q, Mak T. C. W. Syntheses, structures, and photoluminescent properties of lanthanide coordination polymers based on a zwitterionic aromatic polycarboxylate ligand[J]. Cryst. Growth. Des., 2015,15:4331-4340. doi: 10.1021/acs.cgd.5b00625

    7. [7]

      Genna D. T, Wong-Foy A G, Matzger A. J, Sanford M. S. Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange[J]. J. Am. Chem. Soc., 2013,135:10586-10589. doi: 10.1021/ja402577s

    8. [8]

      Wang Y, Lei Y, Chi S, Luo Y. Rare earth metal bis(silylamide) complexes bearing pyridyl-functionalized indenyl ligand: synthesis, structure and performance in the living polymerization of L-lactide and rac-lactide[J]. Dalton. Trans., 2013,42:1862-1871. doi: 10.1039/C2DT32083E

    9. [9]

      Yang, J. X.; Zhang, X.; Cheng, J. K.; Zhang, J.; Yao, Y. G. pH influence on the structural variations of 4,4′-oxydiphthalate coordination polymers. Cryst. Growth. Des. 2012, 12, 333-345.

    10. [10]

      Zhang J, Wojtas L, Larsen R. W, Eddaoudi M, Zaworotko M. J. Temperature and concentration control over interpenetration in a metal-organic material[J]. J. Am. Chem. Soc., 2009,131:17040-17041. doi: 10.1021/ja906911q

    11. [11]

      Guo Z, Wu H, Srinivas G, Zhou Y, Xiang S, Chen Z, Yang Y, Zhou W, O?Keeffe M, Chen B. A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature[J]. Angew. Chem. Int. Ed. Engl., 2011,50:3178-3181. doi: 10.1002/anie.201007583

    12. [12]

      Wang R, Meng Q, Zhang L, Wang H, Dai F, Guo W, Zhao L, Sun D. Investigation of the effect of pore size on gas uptake in two metal-organic frameworks[J]. Chem. Commun., 2014,50:4911-4914. doi: 10.1039/c4cc00477a

    13. [13]

      Lin X, Jia J, Zhao X, Thomas K. M, Blake A. J, Walker G. S, Champness N. R, Hubberstey P, Schroder M. High H2 adsorption by coordination-framework materials[J]. Angew. Chem. Int. Ed. Engl., 2006,45:7358-7364. doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Su F, Lu L. P, Zhu M. L, Feng S. S. One pot synthesis, structure and magnetic property of a pseudo-interpenetrated 2D copper framework based on coordinated 1,1?-biphenyl-3,3?,5,5?-tetracarboxylate and synthon[J]. J. Mol. Struct., 2016.  

    15. [15]

      Zhao H, Dong Y, Liu H. Two new luminescent Zn(II) compounds constructed from guanazole and aromatic polycarboxylate ligands[J]. J. Mol. Struct., 2016.

    16. [16]

      Krap, C. P.; Newby, R.; Dhakshinamoorthy, A.; Garcia, H.; Cebula, I.; Easun, T. L.; Savage, M.; Eyley, J. E.; Gao, S.; Blake, A. J.; Lewis, W.; Beton, P. H.; Warren, M. R.; Allan, D. R.; Frogley, M. D.; Tang, C. C.; Cinque, G.; Yang, S.; Schroder, M. Enhancement of CO2 adsorption and catalytic properties by Fe-doping of [Ga2(OH)2(L)] (H4L = biphenyl-3,3?,5,5?-tetracarboxylic acid), MFM-300(Ga2). Inorg. Chem. 2016, 55, 1076-88.

    17. [17]

      Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA 2008.

    18. [18]

      Sheldrick G. M. A short history of SHELX. Acta Crystallogr[J]. Sect. A, 2015,74:3-8.

    19. [19]

      Brandenburg, K. DIAMOND: Crystal and Molecular Structure Visualization, Version 3.1b, Crystal Impact GbR,Bonn, Germany 2006.

    20. [20]

      Mercury 2.3 Supplied with Cambridge Structural Database, CCDC, Cambridge, U.K 2003-2004.

    21. [21]

      Spek A. L. Structure validation in chemical crystallography[J]. Acta Cryst., 2009,65:148-155.

    22. [22]

      Mascal, M.; Infantes L.; Chisholm J. Water oligomers in crystal hydrates-what?s news and what isn?t? Angew. Chem. Int. Ed. Engl. 2005, 45, 32-36.

    23. [23]

      Blatov, V. A. IUCr Comput. Commission. Newsl. 2006, 7, 4-38.

    24. [24]

      Allen F. H. The Cambridge structural database: a quarter of a million crystal structures and rising[J]. Acta Cryst. B, 2002,58:380-388. doi: 10.1107/S0108768102003890

    25. [25]

      Meng Q, Dai F, Zhang L, Wang R, Sun D. Synthesis, structure, and magnetism of three manganese-organic framework with PtS topology[J]. Sci. China. Chem., 2014,57:1507-1513. doi: 10.1007/s11426-014-5153-4

    26. [26]

      Zhang X, Fan L, Sun Z, Zhang W, Li D, Dou J, Han L. Syntheses, structures, and properties of a series of multidimensional metal-organic polymers based on 3,3′,5,5′-biphenyltetracarboxylic acid and N-donor ancillary ligands[J]. Cryst. Growth. Des., 2013,13:792-803. doi: 10.1021/cg301502u

    27. [27]

      Ghosh S. K, Bharadwaj P. K. Coexistence of water dimer; hexamer clusters in 3D metal-organic framework structures of Ce(III) and Pr(III) with pyridine-2,6-dicarboxylic acid[J]. Inorg. Chem., 2003,42:8250-8254. doi: 10.1021/ic034976z

    28. [28]

      Turner D. R, Hursthouse M. B, Light M. E, Steed J. W. Linear distortion of octahedral metal centres by multiple hydrogen bonds in modular ML4 systems[J]. Chem. Comun., 2004,1354.  

    29. [29]

      Li H. N, Li H. Y, Li L. K, Xu L, Hou K, Zang S. Q, Mak T. C. W. Role of solvents in coordination supramolecular systems[J]. Chem. Commun., 2011,47:5958-5972. doi: 10.1039/c1cc10935a

  • 加载中
    1. [1]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    2. [2]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    3. [3]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    8. [8]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    9. [9]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    12. [12]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    13. [13]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    14. [14]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    17. [17]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    18. [18]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    19. [19]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    20. [20]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

Metrics
  • PDF Downloads(0)
  • Abstract views(6439)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return