Citation: WANG Yong-Cheng, JIA Yi-Ming, WANG Wen-Xue, MA Pan-Pan. Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1819-1828. doi: 10.14102/j.cnki.0254-5861.2011-1119 shu

Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase

  • Corresponding author: WANG Yong-Cheng,
  • Received Date: 8 January 2016
    Accepted Date: 27 September 2016

    Fund Project: National Natural Science Foundation of China 21263023


  • Gas-phase CO2 catalyzed activation hydrogenation by Ru atoms was studied with density functional theory. Based on the structure optimization of different potential energy surfaces, there are two crossing points between singlet and triplet potential energy surfaces and there is a crossing point between quintet and triplet potential energy surfaces in the whole catalytic cycle. Spin transition probabilities in the vicinity of the intersections have been calculated by the Landau-Zener model theory. There are three minimum energy crossing points (MECPs) with strong spin-orbital coupling effect and higher spin transition probability, and all spin inversion occurred in s orbital and different d orbitals of ruthenium, indicating this is a typical two-state reactivity (TSR) reaction. Finally, the lowest energy reaction path is ensured.
  • 加载中
    1. [1]

      Shi H, Chen G, Zhang C, Zou Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. Acs Catalysis, 2014,4:3637-3643. doi: 10.1021/cs500848f

    2. [2]

      Raksakoon C, Maihom T, Probst M, Limtrakul J. Hydration of carbon dioxide in copper-alkoxide functionalized metal-organic frameworks: a DFT study[J]. J. Phys. Chem. C, 2015,119:3564-3571. doi: 10.1021/jp511185p

    3. [3]

      Daza Y. A, Kent R. A, Yung M. M, Kuhn J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Ind. Eng. Chem. Res, 2014,53:5828-5837. doi: 10.1021/ie5002185

    4. [4]

      Zall C. M, Linehan J. C, Appel A. M. A molecular copper catalyst for hydrogenation of CO2 to formate[J]. ACS Catalysis, 2015,5:5301-5305. doi: 10.1021/acscatal.5b01646

    5. [5]

      Yang X, Kattel S, Senanayake S. D, Boscoboinik J. A, Nie X, Graciani J. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOXTiO2 interface[J]. J. Am. Chem. Soc, 2015,137:10104-10107. doi: 10.1021/jacs.5b06150

    6. [6]

      Kobayashi K, Tanaka K. Reactivity of CO2 activated on transition metals and sulfur ligands[J]. Inorg. Chem, 2015,54:5085-5095. doi: 10.1021/ic502745u

    7. [7]

      Miller A. J. M, Labinger J. A, Bercaw J. E. Trialkylborane-assisted CO2 reduction by late transition metal hydrides[J]. Organomet. Chem, 2011,30:4308-4314. doi: 10.1021/om200364w

    8. [8]

      Mondal B, Neese F, Ye S. Control in the rate-determining step provides a promising strategy to develop new catalysts for CO2 hydrogenation: a local pair natural orbital coupled cluster theory study[J]. Inorg. Chem, 2015,54:7192-7198. doi: 10.1021/acs.inorgchem.5b00469

    9. [9]

      Jessop P. G, Ikariya T, Noyori R. Homogeneous hydrogenation of carbon dioxide[J]. Chem. Rev, 1995,95:259-272. doi: 10.1021/cr00034a001

    10. [10]

      Solymosi F, Erdöhelyi A. Hydrogenation of CO2 to CH4 over alumina-supported noble metals[J]. J. Mol Catal Rev, 1980:8471-8474.

    11. [11]

      Weatherbee G. D, Bartholomew C. H. Hydrogenation of CO2 on group VIII metals: IV[J]. Specific activities and selectivities of silica-supported Co, Fe, and Ru. J. Catal, 1984,87:352-362.

    12. [12]

      Chen X. Y, Zhao Y. X, Wang S. G. Relativistic DFT study on the reaction mechanism of second-row transition metal Ru with CO2[J]. J. Phys. Chem. A, 2006,110:3552-3558. doi: 10.1021/jp053296+

    13. [13]

      Wang W. H, Himeda Y, Muckerman J. T, Manbeck G. F, Fujita. E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chem. Rev, 2015,115:12936-12973. doi: 10.1021/acs.chemrev.5b00197

    14. [14]

      Declercq R, Bouhadir G, Bourissou D, Légaré M. A, Courtemanche M. A, Nahi K. S. Hydroboration of carbon dioxide using ambiphilic phosphine-borane catalysts: on the role of the formaldehyde adduct[J]. ACS Catalysis, 2015,5:2513-2520. doi: 10.1021/acscatal.5b00189

    15. [15]

      Karamad M, Hansen H. A, Rossmeisl J, Norskov J. K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2[J]. ACS Catalysis, 2015,5:4075-4081. doi: 10.1021/cs501542n

    16. [16]

      Tominaga K. I, Sasaki Y, Kawai M, Watanabe T, Saito M. Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane[J]. J. Chem. Soc. Chem. Commun, 1993,7:629-631.  

    17. [17]

      Tsuchiya K, Huang J. D, Tominaga K. Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes[J]. ACS Catalysis, 2013,3:2865-2868. doi: 10.1021/cs400809k

    18. [18]

      Harvey J. N, Poli R, Smith K. M. Understanding the reactivity of transition metal complexes involving multiple spin states[J]. Coord. Chem. Rev, 2003,238:347-361.  

    19. [19]

      Shaik S. Spin-orbital coupling in the oxidative activation of H-H by FeO+. Selection rules and reactivity effects[J]. J.Am. Chem. Soc, 1997,119:1773-1786. doi: 10.1021/ja963033g

    20. [20]

      Nian J, Wang Y, Ma W, Ji D, Wang C, La M. Theoretical investigation for the cycle reaction of N2O (x1Σ+) with CO (1Σ+) catalyzed by IrO n+(n = 1 2) and utilizing the energy span model to study its kinetic information[J]. J.Phys. Chem. A, 2011,115:11023-11032.

    21. [21]

      Ma W. P, Wang Y. C, Lv L. L, Jin Y. Z, Nian J. Y, Ji D. F, Wang Q. A theoretician’s view of the Ce+ mediated activation of the N-H bond in ammonia[J]. Comput. Theor. Chem, 2011,977:69-77. doi: 10.1016/j.comptc.2011.09.016

    22. [22]

      Schröder D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry[J]. Acc. Chem. Res, 2000,33:139-145. doi: 10.1021/ar990028j

    23. [23]

      Frisch, M. J[J]. , .

    24. [24]

      Becke A. D. Density-functional thermochemistry[J]. III. The role of exact exchange. J. Chem. Phys, 1993,98:5648-5652.  

    25. [25]

      Lee C, Yang W, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37:785-789. doi: 10.1103/PhysRevB.37.785

    26. [26]

      Frisch M. J, Pople J. A, Binkley J. S. Self-consistent molecular orbital methods 25[J]. Supplementary functions for Gaussian basis sets. J. Chem. Phys, 1984,80:3265-3269.  

    27. [27]

      Yoshizawa K, Shiota Y, Yamabe T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: a study of crossing seams of potential energy surfaces[J]. J. Chem. Phys, 1999,111:538-545. doi: 10.1063/1.479333

    28. [28]

      Harvey J. N, Aschi M, Schwarz H. The singlet and triplet states of phenyl cation[J]. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc, 1998,99:95-99.  

    29. [29]

      Coveney P. V, Child M. S, Barany A. The two-state S matrix for the Landau-Zener potential curve crossing model: predissociation and resonant scattering[J]. J. Phys. B: At. Mol. Phys, 1985,18:4557-4580. doi: 10.1088/0022-3700/18/23/009

    30. [30]

      Zhu C. Y, Nakamura H. Theory of nonadiabatic transition for general two-state curve crossing problems[J]. II. Landau-Zener case. J. Chem. Phys, 1995,102:7448-7461.  

    31. [31]

      Wittig C. The Landau-Zener Formu[J]. J.Phys. Chem. B, 2005,109:8428-8430. doi: 10.1021/jp040627u

    32. [32]

      Goodrow A, Bell A. T, Head-Gordon M. Are spin-forbidden crossings a Bottleneck in methanol oxidation[J]. J.Phys. Chem. C, 2009,113:19361-19364. doi: 10.1021/jp906603r

    33. [33]

      Jin Y. Z, Wang Y. C, Geng Z. Y, Wang H. J, Gan Y. Z. Competitive activation of C-H and C-F bonds in gas phase reaction of Ir+ with CH3F: a DFT study[J]. J. Organomet. Chem, 2012,717:195-201. doi: 10.1016/j.jorganchem.2012.07.017

    34. [34]

      Steinfeld J I, Francisco J. S, Hase W. L. Chemical kinetics and dynamics[J]. Prentice Hall, 1999.  

    35. [35]

      Shavitt . On the problem of calculating the rate constants of elementary reactions[J]. Chem. Phys, 1959,31:1359-1367.

    36. [36]

      Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer[J]. J. Comp. Chem, 2012,33:580-592. doi: 10.1002/jcc.v33.5

    37. [37]

      Fedorov D. G, Koseki S, Schmidt M. W, Gordon M. S. Spin-orbital coupling in molecules: chemistry beyond the adiabatic approximation[J]. Int. Rev. Phys. Chem, 2003,22:551-592. doi: 10.1080/0144235032000101743

  • 加载中
    1. [1]

      Xin Ying LIU Guo Cai DENG Yun Ti CHEN . The Effect of Neodymia on the Activity of Hydrocarbon Synthesis Catalysts from Carbon Dioxide. Chinese Chemical Letters, 1999, 10(11): 965-966.

    2. [2]

      Li Xin-LeLang Xiao-MeiYang Lian-MingZhou Sheng-YuanHu Hong-FanXue ShanSun XinXin Shi-Xuan . Nickel-catalyzed C-N crossing coupling reaction: The synthetic method for N-aryl substituted indenoindole. Chinese Chemical Letters, 2017, 28(3): 569-574. doi: 10.1016/j.cclet.2016.11.002

    3. [3]

      Alduhaish OsamahLi BinArman HadiLin Rui-BiaoZhao John Cong-GuiChen Banglin . A two-dimensional microporous metal-organic framework for highly selective adsorption of carbon dioxide and acetylene. Chinese Chemical Letters, 2017, 28(8): 1653-1658. doi: 10.1016/j.cclet.2017.04.025

    4. [4]

      Ying Min YU Jin Hua FEI Yi Ping ZHANG Xiao Ming ZHENG . Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation. Chinese Chemical Letters, 2006, 17(8): 1097-1100.

    5. [5]

      ZHENG Jin-nanAN KangWANG Jia-mingLI JingLIU Yuan . Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst. Journal of Fuel Chemistry and Technology, 2019, 47(6): 697-708.

    6. [6]

      GAO JiaSONG FujiaoCHENG WenqiangGE YanXU Qi . Catalytic Performance of Pd-Cu/ZrO2 Catalyst for Hydrogenation of Carbon Dioxide to Methanol. Chinese Journal of Applied Chemistry, 2020, 37(2): 160-167. doi: 10.11944/j.issn.1000-0518.2020.02.190211

    7. [7]

      LIU JunhuiSONG YakunSONG ChunshanGUO Xinwen . Recent Advances in Application of Metal-Orgainic Framework-Derived Catalysts for Hydrogenation of Carbon Dioxide and Fischer-Tropsch Synthesis. Chinese Journal of Applied Chemistry, 2020, 37(10): 1099-1111. doi: 10.11944/j.issn.1000-0518.2020.10.200128

    8. [8]

      Qi GongxinFei JinhuaHou ZhaoyinHuang ChuanjingWang DongjieZheng Xiaoming . Catalytical Hydrogenation of CO2 over Copper-molybdenum Oxide Supported on HZSM-5. Chinese Journal of Applied Chemistry, 1999, 16(6): 62-64.

    9. [9]

      ZHANG RongbinXU XiaoyanWANG LiangYAO LiujingGU NingyuYANG ZhenyuJU Yan . Catalytic Methanation of CO2 over Ni Supported on Acidified and Alkalified Bentontie. Chinese Journal of Applied Chemistry, 2011, 28(2): 203-208. doi: 10.3724/SP.J.1095.2011.00299

    10. [10]

      Xiang Yu WANG Xiao Ming ZHENG Zhao Yin HOU . Catalytic Hydrogenation of Diacetyl Monoxime to Tetramethylpyrazine with the Soluble Transition Metal Catalysts. Chinese Chemical Letters, 1999, 10(8): 701-704.

    11. [11]

      Guo Chen YANG Hai Jian YANG . Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide. Chinese Chemical Letters, 2006, 17(11): 1489-1492.

    12. [12]

      Yun-Zhu LIUXiao-Na LISheng-Gui HE . Activation of Carbon Dioxide by Gas-phase Metal Species. Chinese Journal of Structural Chemistry, 2021, 40(10): 1385-1403. doi: 10.14102/j.cnki.0254–5861.2011–3081

    13. [13]

      Chen TieqiaoLiu LongHuang TianzengHan Li-Biao . Synthesis and Reactivity of Group 10 Transition Metal Complexes with Alkenylphosphoryl Compounds. Chinese Journal of Organic Chemistry, 2019, 39(8): 2183-2187. doi: 10.6023/cjoc201905001

    14. [14]

      Zijuan YanPan-Lin ShaoQing QiangFeipeng LiuXuchao WangYongjie LiZi-Qiang Rong . Transition metal-catalyzed conversion of aldehydes to ketones. Chinese Chemical Letters, 2022, 33(3): 1207-1226. doi: 10.1016/j.cclet.2021.08.112

    15. [15]

      Yuan HongKong LongLi TaoZhang Qiang . A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28(12): 2180-2194. doi: 10.1016/j.cclet.2017.11.038

    16. [16]

      Haoxin HuangJiajia ZhaShisheng LiChaoliang Tan . Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chinese Chemical Letters, 2022, 33(1): 163-176. doi: 10.1016/j.cclet.2021.06.004

    17. [17]

      Jingjing WuTingting HuGuoping ZhaoAnran LiRuizheng Liang . Two-dimensional transition metal chalcogenide nanomaterials for cancer diagnosis and treatment. Chinese Chemical Letters, 2022, 33(10): 4437-4448. doi: 10.1016/j.cclet.2021.12.080

    18. [18]


    19. [19]

      Yi Ping ZHANG Jin Hua FEI Ying Min YU Xiao Ming ZHENG . Ruthenium Bisphosphine Catalyst on Functionalized Silica:Novel Efficient Catalyst for Carbon Dioxide Hydrogenation to Formic Acid. Chinese Chemical Letters, 2006, 17(2): 261-264.

  • PDF Downloads(0)
  • Abstract views(5483)
  • HTML views(295)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint