Citation: WANG Yong-Cheng, JIA Yi-Ming, WANG Wen-Xue, MA Pan-Pan. Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1819-1828. doi: 10.14102/j.cnki.0254-5861.2011-1119 shu

Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase

  • Corresponding author: WANG Yong-Cheng, ycwang@163.com
  • Received Date: 8 January 2016
    Accepted Date: 27 September 2016

    Fund Project: National Natural Science Foundation of China 21263023

Figures(5)

  • Gas-phase CO2 catalyzed activation hydrogenation by Ru atoms was studied with density functional theory. Based on the structure optimization of different potential energy surfaces, there are two crossing points between singlet and triplet potential energy surfaces and there is a crossing point between quintet and triplet potential energy surfaces in the whole catalytic cycle. Spin transition probabilities in the vicinity of the intersections have been calculated by the Landau-Zener model theory. There are three minimum energy crossing points (MECPs) with strong spin-orbital coupling effect and higher spin transition probability, and all spin inversion occurred in s orbital and different d orbitals of ruthenium, indicating this is a typical two-state reactivity (TSR) reaction. Finally, the lowest energy reaction path is ensured.
  • 加载中
    1. [1]

      Shi H, Chen G, Zhang C, Zou Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. Acs Catalysis, 2014,4:3637-3643. doi: 10.1021/cs500848f

    2. [2]

      Raksakoon C, Maihom T, Probst M, Limtrakul J. Hydration of carbon dioxide in copper-alkoxide functionalized metal-organic frameworks: a DFT study[J]. J. Phys. Chem. C, 2015,119:3564-3571. doi: 10.1021/jp511185p

    3. [3]

      Daza Y. A, Kent R. A, Yung M. M, Kuhn J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Ind. Eng. Chem. Res, 2014,53:5828-5837. doi: 10.1021/ie5002185

    4. [4]

      Zall C. M, Linehan J. C, Appel A. M. A molecular copper catalyst for hydrogenation of CO2 to formate[J]. ACS Catalysis, 2015,5:5301-5305. doi: 10.1021/acscatal.5b01646

    5. [5]

      Yang X, Kattel S, Senanayake S. D, Boscoboinik J. A, Nie X, Graciani J. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOXTiO2 interface[J]. J. Am. Chem. Soc, 2015,137:10104-10107. doi: 10.1021/jacs.5b06150

    6. [6]

      Kobayashi K, Tanaka K. Reactivity of CO2 activated on transition metals and sulfur ligands[J]. Inorg. Chem, 2015,54:5085-5095. doi: 10.1021/ic502745u

    7. [7]

      Miller A. J. M, Labinger J. A, Bercaw J. E. Trialkylborane-assisted CO2 reduction by late transition metal hydrides[J]. Organomet. Chem, 2011,30:4308-4314. doi: 10.1021/om200364w

    8. [8]

      Mondal B, Neese F, Ye S. Control in the rate-determining step provides a promising strategy to develop new catalysts for CO2 hydrogenation: a local pair natural orbital coupled cluster theory study[J]. Inorg. Chem, 2015,54:7192-7198. doi: 10.1021/acs.inorgchem.5b00469

    9. [9]

      Jessop P. G, Ikariya T, Noyori R. Homogeneous hydrogenation of carbon dioxide[J]. Chem. Rev, 1995,95:259-272. doi: 10.1021/cr00034a001

    10. [10]

      Solymosi F, Erdöhelyi A. Hydrogenation of CO2 to CH4 over alumina-supported noble metals[J]. J. Mol Catal Rev, 1980:8471-8474.

    11. [11]

      Weatherbee G. D, Bartholomew C. H. Hydrogenation of CO2 on group VIII metals: IV[J]. Specific activities and selectivities of silica-supported Co, Fe, and Ru. J. Catal, 1984,87:352-362.

    12. [12]

      Chen X. Y, Zhao Y. X, Wang S. G. Relativistic DFT study on the reaction mechanism of second-row transition metal Ru with CO2[J]. J. Phys. Chem. A, 2006,110:3552-3558. doi: 10.1021/jp053296+

    13. [13]

      Wang W. H, Himeda Y, Muckerman J. T, Manbeck G. F, Fujita. E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chem. Rev, 2015,115:12936-12973. doi: 10.1021/acs.chemrev.5b00197

    14. [14]

      Declercq R, Bouhadir G, Bourissou D, Légaré M. A, Courtemanche M. A, Nahi K. S. Hydroboration of carbon dioxide using ambiphilic phosphine-borane catalysts: on the role of the formaldehyde adduct[J]. ACS Catalysis, 2015,5:2513-2520. doi: 10.1021/acscatal.5b00189

    15. [15]

      Karamad M, Hansen H. A, Rossmeisl J, Norskov J. K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2[J]. ACS Catalysis, 2015,5:4075-4081. doi: 10.1021/cs501542n

    16. [16]

      Tominaga K. I, Sasaki Y, Kawai M, Watanabe T, Saito M. Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane[J]. J. Chem. Soc. Chem. Commun, 1993,7:629-631.  

    17. [17]

      Tsuchiya K, Huang J. D, Tominaga K. Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes[J]. ACS Catalysis, 2013,3:2865-2868. doi: 10.1021/cs400809k

    18. [18]

      Harvey J. N, Poli R, Smith K. M. Understanding the reactivity of transition metal complexes involving multiple spin states[J]. Coord. Chem. Rev, 2003,238:347-361.  

    19. [19]

      Shaik S. Spin-orbital coupling in the oxidative activation of H-H by FeO+. Selection rules and reactivity effects[J]. J.Am. Chem. Soc, 1997,119:1773-1786. doi: 10.1021/ja963033g

    20. [20]

      Nian J, Wang Y, Ma W, Ji D, Wang C, La M. Theoretical investigation for the cycle reaction of N2O (x1Σ+) with CO (1Σ+) catalyzed by IrO n+(n = 1 2) and utilizing the energy span model to study its kinetic information[J]. J.Phys. Chem. A, 2011,115:11023-11032.

    21. [21]

      Ma W. P, Wang Y. C, Lv L. L, Jin Y. Z, Nian J. Y, Ji D. F, Wang Q. A theoretician’s view of the Ce+ mediated activation of the N-H bond in ammonia[J]. Comput. Theor. Chem, 2011,977:69-77. doi: 10.1016/j.comptc.2011.09.016

    22. [22]

      Schröder D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry[J]. Acc. Chem. Res, 2000,33:139-145. doi: 10.1021/ar990028j

    23. [23]

      Frisch, M. J[J]. , .

    24. [24]

      Becke A. D. Density-functional thermochemistry[J]. III. The role of exact exchange. J. Chem. Phys, 1993,98:5648-5652.  

    25. [25]

      Lee C, Yang W, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37:785-789. doi: 10.1103/PhysRevB.37.785

    26. [26]

      Frisch M. J, Pople J. A, Binkley J. S. Self-consistent molecular orbital methods 25[J]. Supplementary functions for Gaussian basis sets. J. Chem. Phys, 1984,80:3265-3269.  

    27. [27]

      Yoshizawa K, Shiota Y, Yamabe T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: a study of crossing seams of potential energy surfaces[J]. J. Chem. Phys, 1999,111:538-545. doi: 10.1063/1.479333

    28. [28]

      Harvey J. N, Aschi M, Schwarz H. The singlet and triplet states of phenyl cation[J]. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc, 1998,99:95-99.  

    29. [29]

      Coveney P. V, Child M. S, Barany A. The two-state S matrix for the Landau-Zener potential curve crossing model: predissociation and resonant scattering[J]. J. Phys. B: At. Mol. Phys, 1985,18:4557-4580. doi: 10.1088/0022-3700/18/23/009

    30. [30]

      Zhu C. Y, Nakamura H. Theory of nonadiabatic transition for general two-state curve crossing problems[J]. II. Landau-Zener case. J. Chem. Phys, 1995,102:7448-7461.  

    31. [31]

      Wittig C. The Landau-Zener Formu[J]. J.Phys. Chem. B, 2005,109:8428-8430. doi: 10.1021/jp040627u

    32. [32]

      Goodrow A, Bell A. T, Head-Gordon M. Are spin-forbidden crossings a Bottleneck in methanol oxidation[J]. J.Phys. Chem. C, 2009,113:19361-19364. doi: 10.1021/jp906603r

    33. [33]

      Jin Y. Z, Wang Y. C, Geng Z. Y, Wang H. J, Gan Y. Z. Competitive activation of C-H and C-F bonds in gas phase reaction of Ir+ with CH3F: a DFT study[J]. J. Organomet. Chem, 2012,717:195-201. doi: 10.1016/j.jorganchem.2012.07.017

    34. [34]

      Steinfeld J I, Francisco J. S, Hase W. L. Chemical kinetics and dynamics[J]. Prentice Hall, 1999.  

    35. [35]

      Shavitt . On the problem of calculating the rate constants of elementary reactions[J]. Chem. Phys, 1959,31:1359-1367.

    36. [36]

      Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer[J]. J. Comp. Chem, 2012,33:580-592. doi: 10.1002/jcc.v33.5

    37. [37]

      Fedorov D. G, Koseki S, Schmidt M. W, Gordon M. S. Spin-orbital coupling in molecules: chemistry beyond the adiabatic approximation[J]. Int. Rev. Phys. Chem, 2003,22:551-592. doi: 10.1080/0144235032000101743

  • 加载中
    1. [1]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    2. [2]

      Manlin LuSheng LiaoJiayu LiZidong YuNingjiu ZhaoZuoti XieShunli ChenLi DangMing-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066

    3. [3]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    4. [4]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    5. [5]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    6. [6]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    7. [7]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    8. [8]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    9. [9]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    10. [10]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    11. [11]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    14. [14]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    17. [17]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    18. [18]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    19. [19]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    20. [20]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

Metrics
  • PDF Downloads(0)
  • Abstract views(5809)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return