Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase
- Corresponding author: WANG Yong-Cheng, ycwang@163.com
Citation:
WANG Yong-Cheng, JIA Yi-Ming, WANG Wen-Xue, MA Pan-Pan. Theoretical Investigation for Two-state Reactivity of CO2 Hydrogenation Catalyzed by Ru in Gas Phase[J]. Chinese Journal of Structural Chemistry,
;2016, 35(12): 1819-1828.
doi:
10.14102/j.cnki.0254-5861.2011-1119
Shi H, Chen G, Zhang C, Zou Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. Acs Catalysis, 2014,4:3637-3643. doi: 10.1021/cs500848f
Raksakoon C, Maihom T, Probst M, Limtrakul J. Hydration of carbon dioxide in copper-alkoxide functionalized metal-organic frameworks: a DFT study[J]. J. Phys. Chem. C, 2015,119:3564-3571. doi: 10.1021/jp511185p
Daza Y. A, Kent R. A, Yung M. M, Kuhn J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Ind. Eng. Chem. Res, 2014,53:5828-5837. doi: 10.1021/ie5002185
Zall C. M, Linehan J. C, Appel A. M. A molecular copper catalyst for hydrogenation of CO2 to formate[J]. ACS Catalysis, 2015,5:5301-5305. doi: 10.1021/acscatal.5b01646
Yang X, Kattel S, Senanayake S. D, Boscoboinik J. A, Nie X, Graciani J. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOXTiO2 interface[J]. J. Am. Chem. Soc, 2015,137:10104-10107. doi: 10.1021/jacs.5b06150
Kobayashi K, Tanaka K. Reactivity of CO2 activated on transition metals and sulfur ligands[J]. Inorg. Chem, 2015,54:5085-5095. doi: 10.1021/ic502745u
Miller A. J. M, Labinger J. A, Bercaw J. E. Trialkylborane-assisted CO2 reduction by late transition metal hydrides[J]. Organomet. Chem, 2011,30:4308-4314. doi: 10.1021/om200364w
Mondal B, Neese F, Ye S. Control in the rate-determining step provides a promising strategy to develop new catalysts for CO2 hydrogenation: a local pair natural orbital coupled cluster theory study[J]. Inorg. Chem, 2015,54:7192-7198. doi: 10.1021/acs.inorgchem.5b00469
Jessop P. G, Ikariya T, Noyori R. Homogeneous hydrogenation of carbon dioxide[J]. Chem. Rev, 1995,95:259-272. doi: 10.1021/cr00034a001
Solymosi F, Erdöhelyi A. Hydrogenation of CO2 to CH4 over alumina-supported noble metals[J]. J. Mol Catal Rev, 1980:8471-8474.
Weatherbee G. D, Bartholomew C. H. Hydrogenation of CO2 on group VIII metals: IV[J]. Specific activities and selectivities of silica-supported Co, Fe, and Ru. J. Catal, 1984,87:352-362.
Chen X. Y, Zhao Y. X, Wang S. G. Relativistic DFT study on the reaction mechanism of second-row transition metal Ru with CO2[J]. J. Phys. Chem. A, 2006,110:3552-3558. doi: 10.1021/jp053296+
Wang W. H, Himeda Y, Muckerman J. T, Manbeck G. F, Fujita. E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chem. Rev, 2015,115:12936-12973. doi: 10.1021/acs.chemrev.5b00197
Declercq R, Bouhadir G, Bourissou D, Légaré M. A, Courtemanche M. A, Nahi K. S. Hydroboration of carbon dioxide using ambiphilic phosphine-borane catalysts: on the role of the formaldehyde adduct[J]. ACS Catalysis, 2015,5:2513-2520. doi: 10.1021/acscatal.5b00189
Karamad M, Hansen H. A, Rossmeisl J, Norskov J. K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2[J]. ACS Catalysis, 2015,5:4075-4081. doi: 10.1021/cs501542n
Tominaga K. I, Sasaki Y, Kawai M, Watanabe T, Saito M. Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane[J]. J. Chem. Soc. Chem. Commun, 1993,7:629-631.
Tsuchiya K, Huang J. D, Tominaga K. Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes[J]. ACS Catalysis, 2013,3:2865-2868. doi: 10.1021/cs400809k
Harvey J. N, Poli R, Smith K. M. Understanding the reactivity of transition metal complexes involving multiple spin states[J]. Coord. Chem. Rev, 2003,238:347-361.
Shaik S. Spin-orbital coupling in the oxidative activation of H-H by FeO+. Selection rules and reactivity effects[J]. J.Am. Chem. Soc, 1997,119:1773-1786. doi: 10.1021/ja963033g
Nian J, Wang Y, Ma W, Ji D, Wang C, La M. Theoretical investigation for the cycle reaction of N2O (x1Σ+) with CO (1Σ+) catalyzed by IrO n+(n = 1 2) and utilizing the energy span model to study its kinetic information[J]. J.Phys. Chem. A, 2011,115:11023-11032.
Ma W. P, Wang Y. C, Lv L. L, Jin Y. Z, Nian J. Y, Ji D. F, Wang Q. A theoretician’s view of the Ce+ mediated activation of the N-H bond in ammonia[J]. Comput. Theor. Chem, 2011,977:69-77. doi: 10.1016/j.comptc.2011.09.016
Schröder D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry[J]. Acc. Chem. Res, 2000,33:139-145. doi: 10.1021/ar990028j
Frisch, M. J[J]. , .
Becke A. D. Density-functional thermochemistry[J]. III. The role of exact exchange. J. Chem. Phys, 1993,98:5648-5652.
Lee C, Yang W, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37:785-789. doi: 10.1103/PhysRevB.37.785
Frisch M. J, Pople J. A, Binkley J. S. Self-consistent molecular orbital methods 25[J]. Supplementary functions for Gaussian basis sets. J. Chem. Phys, 1984,80:3265-3269.
Yoshizawa K, Shiota Y, Yamabe T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: a study of crossing seams of potential energy surfaces[J]. J. Chem. Phys, 1999,111:538-545. doi: 10.1063/1.479333
Harvey J. N, Aschi M, Schwarz H. The singlet and triplet states of phenyl cation[J]. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc, 1998,99:95-99.
Coveney P. V, Child M. S, Barany A. The two-state S matrix for the Landau-Zener potential curve crossing model: predissociation and resonant scattering[J]. J. Phys. B: At. Mol. Phys, 1985,18:4557-4580. doi: 10.1088/0022-3700/18/23/009
Zhu C. Y, Nakamura H. Theory of nonadiabatic transition for general two-state curve crossing problems[J]. II. Landau-Zener case. J. Chem. Phys, 1995,102:7448-7461.
Wittig C. The Landau-Zener Formu[J]. J.Phys. Chem. B, 2005,109:8428-8430. doi: 10.1021/jp040627u
Goodrow A, Bell A. T, Head-Gordon M. Are spin-forbidden crossings a Bottleneck in methanol oxidation[J]. J.Phys. Chem. C, 2009,113:19361-19364. doi: 10.1021/jp906603r
Jin Y. Z, Wang Y. C, Geng Z. Y, Wang H. J, Gan Y. Z. Competitive activation of C-H and C-F bonds in gas phase reaction of Ir+ with CH3F: a DFT study[J]. J. Organomet. Chem, 2012,717:195-201. doi: 10.1016/j.jorganchem.2012.07.017
Steinfeld J I, Francisco J. S, Hase W. L. Chemical kinetics and dynamics[J]. Prentice Hall, 1999.
Shavitt . On the problem of calculating the rate constants of elementary reactions[J]. Chem. Phys, 1959,31:1359-1367.
Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer[J]. J. Comp. Chem, 2012,33:580-592. doi: 10.1002/jcc.v33.5
Fedorov D. G, Koseki S, Schmidt M. W, Gordon M. S. Spin-orbital coupling in molecules: chemistry beyond the adiabatic approximation[J]. Int. Rev. Phys. Chem, 2003,22:551-592. doi: 10.1080/0144235032000101743
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Manlin Lu , Sheng Liao , Jiayu Li , Zidong Yu , Ningjiu Zhao , Zuoti Xie , Shunli Chen , Li Dang , Ming-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Han Wu , Yumei Wang , Zekai Ren , Hailin Cong , Youqing Shen , Bing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Wei-Bin Li , Xiao-Chao Huang , Pei Liu , Jie Kong , Guo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Minjun Yin , Yuhui Lin , Manli Zhuang , Wei Xiao , Jie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Ruixue Liu , Xiaobing Ding , Qiwei Lang , Gen-Qiang Chen , Xumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961