Citation:
QIU Mei, LIU Yu, WU Juan, LI Yi, HUANG Xin, CHEN Wen-Kai, ZHANG Yong-Fan. Theoretical Investigations of the Activation of CO2 on the Transition Metal-doped Cu(100) and Cu(111) Surfaces[J]. Chinese Journal of Structural Chemistry,
;2016, 35(5): 669-678.
doi:
10.14102/j.cnki.0254-5861.2011-1097
-
Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of CO2 molecule on a series of surface alloys that are built by dispersing individual middle-late transition metal (TM) atoms (TM = Fe, Co, Ni, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au) on the Cu(100) and Cu(111) surfaces. The most stable configurations of CO2 chemisorbed on different TM/Cu surfaces are determined, and the results show that among the late transition metals, Co, Ru, and Os are potentially good dopants to enhance the chemisorption and activation of CO2 on copper surfaces. To obtain a deep understanding of the adsorption property, the bonding characteristics of the adsorption bonds are carefully examined by the crystal orbital Hamilton population technique, which reveals that the TM atom primarily provides d orbitals with z-component, namely dz2, dxz, and dyz orbitals to interact with the adsorbate.
-
Keywords:
- carbon dioxide,
- chemisorption,
- transition metal surfaces,
- DFT
-
-
-
[1]
(1) Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225-273.
-
[2]
(2) de la Pena O'Shea, V. A.; Gonzalez, S.; Illas, F.; Fierro, J. L. G. Evidence for spontaneous CO2 activation on cobalt surfaces. Chem. Phys. Lett. 2008, 454, 262-268.
-
[3]
(3) Ding, X.; De Rogatis, L.; Vesselli, E.; Baraldi, A.; Comelli, G.; Rosei, R.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Ancilotto, F.; Baldereschi, A.; Peressi, M. Interaction of carbon dioxide with Ni(110): a combined experimental and theoretical study. Phys. Rev. B 2007, 76, 195425-195437.
-
[4]
(4) Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Chemisorption of CO2 on nickel surfaces. J. Phys. Chem. B 2005, 109, 18956-18963.
-
[5]
(5) Bartos, B.; Freund, H. J.; Kuhlenbeck, H.; Neumann, M.; Lindner, H.; Müller, K. Adsorption and reaction of CO2 and CO2/O CO-adsorption on Ni(110): angle resolved photoemission (ARUPS) and electron energy loss (HREELS) studies. Surf. Sci. 1987, 179, 59-89.
-
[6]
(6) Wang, G. C.; Nakamura, J. Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: a DFT study. J. Phys. Chem. Lett. 2010, 1, 3053-3057.
-
[7]
(7) Wang, G. C.; Ling, J.; Morikawa, Y.; Nakamura, J.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z. Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(Hkl) surfaces. Surf. Sci. 2004, 570, 205-217.
-
[8]
(8) Funk, S.; Hokkanen, B.; Wang, J.; Burghaus, U.; Bozzolo, G.; Garces, J. E. Adsorption dynamics of CO2 on Cu(110): a molecular beam study. Surf. Sci. 2006, 600, 583-590.
-
[9]
(9) Glezakou, V. A.; Dang, L. X. Spontaneous activation of CO2 and possible corrosion pathways on the low-index iron surface Fe(100). J. Phys. Chem. C 2009, 113, 3691-3696.
-
[10]
(10) Ge, Q. F.; Neurock, M. Adsorption and activation of Co over flat and stepped Co surfaces: a first principles analysis. J. Phys. Chem. B 2006, 110, 15368-15380.
-
[11]
(11) Liu, C.; Cundari, T. R.; Wilson, A. K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: in comparison with homogeneous catalysis. J. Phys. Chem. C 2012, 116, 5681-5688.
-
[12]
(12) Hess, G.; Baumgartner, C.; Froitzheim, H. Adsorption sites and microstructures of CO2 on Fe(111) derived from specular and off-specular HREELS. Phys. Rev. B 2001, 63, 165416-165423.
-
[13]
(13) Behner, H.; Spiess, W.; Wedler, G.; Borgmann, D. Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111). Surf. Sci. 1986, 175, 276-286.
-
[14]
(14) Rasmussen, P. B.; Taylor, P. A.; Chorkendorff, I. The interaction of carbon dioxide with Cu(100). Surf. Sci. 1992, 269/270, 352-359.
-
[15]
(15) Hadenfeldt, S.; Benndorf, C.; Stricker, A.; Towe, M. Adsorption of CO2 on K-promoted Cu(111) surfaces. Surf. Sci. 1996, 352, 295-299.
-
[16]
(16) Taylor, P. A.; Rasmussen, P. B.; Chorkendorff, I. Carbon dioxide chemistry on Cu(100). J. Vac. Sci. Technol., A 1992, 10, 2570-2575.
-
[17]
(17) Ernst, K. H.; Schlatterbeck, D.; Christmann, K. Adsorption of carbon dioxide on Cu(110) and on hydrogen and oxygen covered Cu(110) surfaces. Phys. Chem. Chem. Phys. 1999, 1, 4105-4112.
-
[18]
(18) Nerlov, J.; Chorkendorff, I. Promotion through gas phase induced surface segregation: methanol synthesis from CO, CO2 and H2 over Ni/Cu(100). Catal. Lett. 1998, 54, 171-176.
-
[19]
(19) Nerlov, J.; Chorkendorff, I. Methanol synthesis from CO2, CO, and H2 over Cu(100) and Ni/Cu(100). J. Catal. 1999, 181, 271-279.
-
[20]
(20) Nerlov, J.; Sckerl, S.; Wambach, J.; Chorkendorff, I. Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Appl. Catal. A: General 2000, 191, 97-109.
-
[21]
(21) Yang, Y. X.; White, M. G.; Liu, P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J. Phys. Chem. C 2011, 116, 248-256.
-
[22]
(22) Kresse, G.; Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558-561.
-
[23]
(23) Kresse, G.; Hafner, J. Ab initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B 1993, 48, 13115-13118.
-
[24]
(24) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
-
[25]
(25) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
-
[26]
(26) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
-
[27]
(27) Hafner, J. Ab-initio simulations of materials using Vasp: density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044-2078.
-
[28]
(28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
-
[29]
(29) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
-
[30]
(30) Dronskowski, R.; Bloechl, P. E. Crystl orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617-8624.
-
[31]
(31) Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461-5466.
-
[32]
(32) Maintz, S; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557-2567.
-
[1]
-
-
-
[1]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[2]
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
-
[3]
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
-
[4]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[5]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[6]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[7]
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
-
[8]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[9]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[10]
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
-
[11]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[12]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[13]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[14]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[15]
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
-
[16]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[17]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[18]
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
-
[19]
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
-
[20]
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(814)
- HTML views(13)