Citation: QIU Mei, LIU Yu, WU Juan, LI Yi, HUANG Xin, CHEN Wen-Kai, ZHANG Yong-Fan. Theoretical Investigations of the Activation of CO2 on the Transition Metal-doped Cu(100) and Cu(111) Surfaces[J]. Chinese Journal of Structural Chemistry, ;2016, 35(5): 669-678. doi: 10.14102/j.cnki.0254-5861.2011-1097 shu

Theoretical Investigations of the Activation of CO2 on the Transition Metal-doped Cu(100) and Cu(111) Surfaces

  • Corresponding author: ZHANG Yong-Fan, 
  • Received Date: 23 December 2015
    Available Online: 23 March 2016

    Fund Project:

  • Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of CO2 molecule on a series of surface alloys that are built by dispersing individual middle-late transition metal (TM) atoms (TM = Fe, Co, Ni, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au) on the Cu(100) and Cu(111) surfaces. The most stable configurations of CO2 chemisorbed on different TM/Cu surfaces are determined, and the results show that among the late transition metals, Co, Ru, and Os are potentially good dopants to enhance the chemisorption and activation of CO2 on copper surfaces. To obtain a deep understanding of the adsorption property, the bonding characteristics of the adsorption bonds are carefully examined by the crystal orbital Hamilton population technique, which reveals that the TM atom primarily provides d orbitals with z-component, namely dz2, dxz, and dyz orbitals to interact with the adsorbate.
  • 加载中
    1. [1]

      (1) Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225-273.

    2. [2]

      (2) de la Pena O'Shea, V. A.; Gonzalez, S.; Illas, F.; Fierro, J. L. G. Evidence for spontaneous CO2 activation on cobalt surfaces. Chem. Phys. Lett. 2008, 454, 262-268.

    3. [3]

      (3) Ding, X.; De Rogatis, L.; Vesselli, E.; Baraldi, A.; Comelli, G.; Rosei, R.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Ancilotto, F.; Baldereschi, A.; Peressi, M. Interaction of carbon dioxide with Ni(110): a combined experimental and theoretical study. Phys. Rev. B 2007, 76, 195425-195437.

    4. [4]

      (4) Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Chemisorption of CO2 on nickel surfaces. J. Phys. Chem. B 2005, 109, 18956-18963.

    5. [5]

      (5) Bartos, B.; Freund, H. J.; Kuhlenbeck, H.; Neumann, M.; Lindner, H.; Müller, K. Adsorption and reaction of CO2 and CO2/O CO-adsorption on Ni(110): angle resolved photoemission (ARUPS) and electron energy loss (HREELS) studies. Surf. Sci. 1987, 179, 59-89.

    6. [6]

      (6) Wang, G. C.; Nakamura, J. Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: a DFT study. J. Phys. Chem. Lett. 2010, 1, 3053-3057.

    7. [7]

      (7) Wang, G. C.; Ling, J.; Morikawa, Y.; Nakamura, J.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z. Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(Hkl) surfaces. Surf. Sci. 2004, 570, 205-217.

    8. [8]

      (8) Funk, S.; Hokkanen, B.; Wang, J.; Burghaus, U.; Bozzolo, G.; Garces, J. E. Adsorption dynamics of CO2 on Cu(110): a molecular beam study. Surf. Sci. 2006, 600, 583-590.

    9. [9]

      (9) Glezakou, V. A.; Dang, L. X. Spontaneous activation of CO2 and possible corrosion pathways on the low-index iron surface Fe(100). J. Phys. Chem. C 2009, 113, 3691-3696.

    10. [10]

      (10) Ge, Q. F.; Neurock, M. Adsorption and activation of Co over flat and stepped Co surfaces: a first principles analysis. J. Phys. Chem. B 2006, 110, 15368-15380.

    11. [11]

      (11) Liu, C.; Cundari, T. R.; Wilson, A. K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: in comparison with homogeneous catalysis. J. Phys. Chem. C 2012, 116, 5681-5688.

    12. [12]

      (12) Hess, G.; Baumgartner, C.; Froitzheim, H. Adsorption sites and microstructures of CO2 on Fe(111) derived from specular and off-specular HREELS. Phys. Rev. B 2001, 63, 165416-165423.

    13. [13]

      (13) Behner, H.; Spiess, W.; Wedler, G.; Borgmann, D. Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111). Surf. Sci. 1986, 175, 276-286.

    14. [14]

      (14) Rasmussen, P. B.; Taylor, P. A.; Chorkendorff, I. The interaction of carbon dioxide with Cu(100). Surf. Sci. 1992, 269/270, 352-359.

    15. [15]

      (15) Hadenfeldt, S.; Benndorf, C.; Stricker, A.; Towe, M. Adsorption of CO2 on K-promoted Cu(111) surfaces. Surf. Sci. 1996, 352, 295-299.

    16. [16]

      (16) Taylor, P. A.; Rasmussen, P. B.; Chorkendorff, I. Carbon dioxide chemistry on Cu(100). J. Vac. Sci. Technol., A 1992, 10, 2570-2575.

    17. [17]

      (17) Ernst, K. H.; Schlatterbeck, D.; Christmann, K. Adsorption of carbon dioxide on Cu(110) and on hydrogen and oxygen covered Cu(110) surfaces. Phys. Chem. Chem. Phys. 1999, 1, 4105-4112.

    18. [18]

      (18) Nerlov, J.; Chorkendorff, I. Promotion through gas phase induced surface segregation: methanol synthesis from CO, CO2 and H2 over Ni/Cu(100). Catal. Lett. 1998, 54, 171-176.

    19. [19]

      (19) Nerlov, J.; Chorkendorff, I. Methanol synthesis from CO2, CO, and H2 over Cu(100) and Ni/Cu(100). J. Catal. 1999, 181, 271-279.

    20. [20]

      (20) Nerlov, J.; Sckerl, S.; Wambach, J.; Chorkendorff, I. Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Appl. Catal. A: General 2000, 191, 97-109.

    21. [21]

      (21) Yang, Y. X.; White, M. G.; Liu, P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J. Phys. Chem. C 2011, 116, 248-256.

    22. [22]

      (22) Kresse, G.; Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558-561.

    23. [23]

      (23) Kresse, G.; Hafner, J. Ab initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B 1993, 48, 13115-13118.

    24. [24]

      (24) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.

    25. [25]

      (25) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

    26. [26]

      (26) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

    27. [27]

      (27) Hafner, J. Ab-initio simulations of materials using Vasp: density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044-2078.

    28. [28]

      (28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

    29. [29]

      (29) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

    30. [30]

      (30) Dronskowski, R.; Bloechl, P. E. Crystl orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617-8624.

    31. [31]

      (31) Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461-5466.

    32. [32]

      (32) Maintz, S; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557-2567.

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    6. [6]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    7. [7]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    10. [10]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    11. [11]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    12. [12]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    13. [13]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    14. [14]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    15. [15]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    16. [16]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    17. [17]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    18. [18]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    19. [19]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    20. [20]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

Metrics
  • PDF Downloads(0)
  • Abstract views(813)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return