Citation: CHEN Han, MU Ruo-Jun, PANG Jie, TAN Xiao-Dan, WANG Min, Chiang Wei-Yin. Structure and Potential Application of Konjac Glucomannan Nano Microfibril Aerogel[J]. Chinese Journal of Structural Chemistry, ;2016, 35(1): 166-168. doi: 10.14102/j.cnki.0254-5861.2011-1077 shu

Structure and Potential Application of Konjac Glucomannan Nano Microfibril Aerogel

  • Received Date: 2 December 2015
    Available Online: 4 January 2016

    Fund Project:

  • An ultra-light and high porosity nano microfibril aerogel was prepared from konjac glucomannan (KGM) by the electrospinning and freeze-drying. The structure of aerogel was analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) while the density and compressive strength of the samples were studied separately. Results reveal that porous network structure of the KGM nano microfibril aerogel is constructed by intermolecular hydrogen bonds in random and interpenetrate way. The nano microfibril structure presents in the KGM aerogel, which is an important reason of its high density and compressive strength. There is a potential application for this unique nano microfibril aerogel in the absorption of biodegradation bacteria to solve problems in marine oil spill pollution.
  • 加载中
    1. [1]

      (1) Materials: energy stored inside an aerogel. Nature 2015, 522(7555), 130.

    2. [2]

      (2) Biomimetics: steel strong, air light. Nature 2009, 458(7237), 389.

    3. [3]

      (3) Pollanen, J.; Li, J. I. A.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.; Sauls, J. A. New chiral phases of superfluid 3He stabilized by anisotropic silica aerogel. Nature Phy. 2012, 8, 317-320.

    4. [4]

      (4) Robitzer, M.; Tourrette, A.; Horga, R.; Valentin, R.; Boissière, M.; Devoisselle, J. M.; Renzo, D. F.; Quignard, F. Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carb. Poly. 2011, 85, 44-53.

    5. [5]

      (5) Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Lin, H. B.; Ma, Z.; CHIANG Wei-Yin. Influence of topology structure on the stability of Konjac glucomannan nano gel microfibril. Chin. J. Struct.chem. 2015, 34, 1939-1941.

    6. [6]

      (6) Kyu, H. K.; Youngseok, O.; Islam, M. F. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Nano 2012, 7, 562-566.

    7. [7]

      (7) Wang, L. X.; Jiang, W.; Lin, C. P.; Zhong, Q. X.; Pang, J. Studies on the hydrogen bonding network structures of amino-konjacglucomannan-zinc chelate. Chin. J. Struct. Chem. 2014, 33, 171-178.

    8. [8]

      (8) Mashallah, R.; Abtin, E. A.; Mohammad, M. M. R.; Ahmad, F. I.; Takeshi, M. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. in Poly. Sci. 2014, 39, 817-861.

    9. [9]

      (9) Marcus, A. W.; Swanee, J. S.; Matthew, D. M.; Jeremy, L.; Art, J. N.; Leta, Y. W.; Alex, E. G.; Theodore, F. B.; Christine, A. O. Ultralow density, monolithic WS2, MoS2, and MoS2/graphene aerogels. ACS Nano. 2015, 9, 4698-4705.

    10. [10]

      (10) Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575-1578.

  • 加载中
    1. [1]

      MU Ruo-JunPANG JieYUAN YiTAN Xiao-DanWANG MinCHEN HanWei-Yin Chiang . Progress on the Structures and Functions of Aerogels. Chinese Journal of Structural Chemistry, 2016, 35(3): 487-497. doi: 10.14102/j.cnki.0254-5861.2011-1098

    2. [2]

      CHEN HanMU Ruo-JunPANG JieTAN Xiao-DanLIN Hai-BinMA ZhenCHIANG Wei-Yin . Influence of Topology Structure on the Stability of Konjac Glucomannan Nano Gel Microfibril. Chinese Journal of Structural Chemistry, 2015, 34(12): 1939-1941. doi: 10.14102/j.cnki.0254-5861.2011-1057

    3. [3]

      Guo Cheng YANG Yan PAN Jian GONG Chang Lu SHAO Shang Bin WEN Chen SHAO Lun Yu QU . Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt. Chinese Chemical Letters, 2004, 15(10): 1212-1214.

    4. [4]

      WANG Cui-EWANG NingLIU Xin-Hua . Electrospun Fibrous Ag-Graphene-TiO2 with Enhanced Photocurrent Response under Visible-Light Illumination. Chinese Journal of Inorganic Chemistry, 2017, 33(9): 1618-1624. doi: 10.11862/CJIC.2017.186

    5. [5]

      WEN Cheng-RongSUN Zhong-QiPANG JieMA ZhenSHEN Ben-ShuXIE Bing-QingJING Pu . Analysis on the Network Node of Konjac Glucomannan Molecular Chain. Chinese Journal of Structural Chemistry, 2014, 33(8): 1253-1260.

    6. [6]

      Li Gui CHEN Zhi Lan LIU Ying Jun CHEN Ren Xi ZHUO . Synthesis and Characterization of Phosphated Konjac Glucomannan Hydrogels. Chinese Chemical Letters, 2005, 16(12): 1652-1654.

    7. [7]

      PANG JieMA ZhenSHEN Ben-ShuXU Qing-JinSUN Zhong-QiFU Li-QunFANG Wen-YuWEN Cheng-Rong . Hydrogen Bond Networks' QSAR and Topological Analysis of Konjac Glucomannan Chains. Chinese Journal of Structural Chemistry, 2014, 33(3): 480-489.

    8. [8]

      MA ZhenPANG JieLIN Mei-LingXIE Bing-QingCHEN HanCHEN Jing-Ling . Quantum Mechanical Analysis of Sodium Alginate Effects on the Konjac Glucomannan Stability. Chinese Journal of Structural Chemistry, 2015, 34(8): 1187-1196. doi: 10.14102/j.cnki.0254-5861.2011-0621

    9. [9]

      TAN Xiao-DanHUANG Rong-XunMU Ruo-JunXIE Bing-QingYUAN YiWANG MinCHEN HanPANG Jie . Effect of Different Conditions on the Structural Color of Konjac Glucomannan Particles. Chinese Journal of Structural Chemistry, 2016, 35(10): 1525-1531. doi: 10.14102/j.cnki.0254-5861.2011-0983

    10. [10]

      Bing LIU Zhi Lan LIU Ren Xi ZHUO . Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid). Chinese Chemical Letters, 2006, 17(10): 1377-1380.

    11. [11]

      Wang YafeiZhang TaoGuo XudongHu RuiWang ShuangqingYang Guoqiang . Preparation of Hydrophobic SiO2 Aerogel by Rapid Solvents Exchange Method and Its Application Loaded with Organic Fluorescence Probe. Chinese Journal of Organic Chemistry, 2019, 39(2): 550-554. doi: 10.6023/cjoc201808002

    12. [12]

      Gui Yun XU Li Wen CHANG Yan Mei XU Yan He MA Pei Jin ZHOU . PREPARATION OF OLIGOSACCHARIDES FROM THE ENZYMATIC HYDROLYSATES OF KONJAC GLUCOMANNAN BY LOW-PRESSURE COLUMN CHROMATOGRAPHY. Chinese Chemical Letters, 1996, 7(2): 131-132.

    13. [13]

      WANG Xu-hongZHU HuiHuang Jin-shanJI Wang-jinLUO Xiu-qi . Performance of carbon fiber supported Pt-SnO2 anode catalyst for direct ethanol fuel cell. Journal of Fuel Chemistry and Technology, 2014, 42(6): 763-768.

    14. [14]

      YANG Li-XinCHEN Xue-SiJING Xia-Bin . Preparation of Superhydrophilic Tough Polylactide Fiber Mats. Chinese Journal of Applied Chemistry, 2008, 25(3): 281-285.

    15. [15]

      SUN KangWANG Liping . Fabrication and Properties of the Nanofibers Containing Chitosan Produced by Electrospinning. Chinese Journal of Applied Chemistry, 2011, 28(2): 123-130. doi: 10.3724/SP.J.1095.2011.00194

    16. [16]

      XU SongxiuWANG YinningCONG YuanhuaJIANG ShipingLI Liangbin . Construction of Polydimethylsiloxane Nanochannel Using Electrospinning. Chinese Journal of Applied Chemistry, 2012, 29(1): 23-28. doi: 10.3724/SP.J.1095.2012.00045

    17. [17]

      PENG ChongYANG DongmeiLI GuogangLIAN HongzhouLIN Jun . Electrospinning Fabrication and Upconversion Luminescent Properties of CaTiO3: Er3+ Microbelts. Chinese Journal of Applied Chemistry, 2012, 29(12): 1438-1446. doi: 10.3724/SP.J.1095.2012.20429

    18. [18]

      SUI ChunhongWANG ChengWEI yuqingZHAI HuanLI NanDONG ShunfuHAN Liqin . Preparation and Enzymatic Characterizations of Hydrophobic Poly(acrylic acid)/Polyvinyl Alcohol/Glucoamylase Composite Nanofiber Membrane. Chinese Journal of Applied Chemistry, 2015, 32(12): 1364-1370. doi: 10.11944/j.issn.1000-0518.2015.12.150143

    19. [19]

      Wang LingYang GuoruiWang JiananWang SilanPeng ShengjieYan Wei . Research Progress on Electrospun Materials for Sodium-Ion Batteries. Acta Chimica Sinica, 2018, 76(9): 666-680. doi: 10.6023/A18040129

    20. [20]

      YU JiWEI Hai-YanLi LIYANG Zhen-YuCAI Jian-Xin . Preparation and Lithium Storage Properties of Grid-like SnO2 Fibers. Chinese Journal of Inorganic Chemistry, 2018, 34(10): 1792-1798. doi: 10.11862/CJIC.2018.232

Metrics
  • PDF Downloads(2)
  • Abstract views(1906)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return