Citation: CHEN Xin, ZHANG Ming-Xing, HUANG Kun-Lin. A Novel Chiral Cd-organic Network Based on Flexible Coupled Cinnamic Acid[J]. Chinese Journal of Structural Chemistry, ;2016, 35(5): 805-810. doi: 10.14102/j.cnki.0254-5861.2011-0954 shu

A Novel Chiral Cd-organic Network Based on Flexible Coupled Cinnamic Acid

  • Corresponding author: HUANG Kun-Lin, 
  • Received Date: 21 August 2015
    Available Online: 11 December 2015

    Fund Project:

  • A new metal-organic network, [Cd(CH3OH)2(epa)]n (1), was synthesized from an achiral coupled cinnamic acid, 3,3'-((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))diacrylic acid (H2epa), and Cd(NO3)2·4H2O under solvothermal conditions. The complex crystallizes in orthorhombic, space group P21212 with a = 9.8286(8), b = 21.0004(16), c = 5.5169(4) Å, V = 1138.71(15) Å3, Mr = 528.81, Dc = 1.542 Mg/cm3, F(000) = 536, Z = 2, the final R = 0.0345 and wR = 0.1101 for 2006 observed reflections (I> 2σ(I)). In 1 the epa2+ anions alternately bridge the Cd(II) cations to form a one-dimensional (1D) infinite homochiral helical chain of [Cd(epa)]n. The chiral homohelical chains via hydrogen bonds formed a two-dimensional (2D) network. The photoluminescence of 1 was also investigated in solid state at ambient temperature.
  • 加载中
    1. [1]

      (1) (a) Cai, S. L.; Zheng, S. R.; Wen, Z. Z.; Fan, J.; Zhang, W. G. Assembly of chiral/achiral coordination polymers based on 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid: chirality transfer between chiral two-dimensional networks containing helical chains. Cryst. Growth Des. 2012, 12, 2355-2361.

    2. [2]

      (b) Xu, Z. X.; Tan, Y. X.; Fu, H. R.; Kang, Y.; Zhang, J. Integration of rigid and flexible organic parts for the construction of a homochiral metal-organic framework with high porosity. Chem. Commun. 2015, 51, 2565-2568.

    3. [3]

      (c) Chang, C. L.; Qi, X. Y.; Zhang, J. W.; Qiu, Y. M.; Li, X. J.; Wang, X.; Bai, Y.; Sun, J. L.; Liu, H. W. Facile synthesis of magnetic homochiral metal-organic frameworks for ""enantioselective fishing"". Chem. Commun. 2015, 51, 3566-3569.

    4. [4]

      (2) (a) Jing, X. M.; Zhang, L. R.; Ma, T. L.; Li, G. H.; Yu, Y.; Huo, Q. S.; Eddaoudi, M.; Liu, Y. L. Assembly of two metal-organic frameworks with intrinsic chiral topology from achiral materials. Cryst. Growth Des. 2010, 10, 492-494.

    5. [5]

      (b) Ju, W. W.; Zhang, H. T.; Xu, X.; Zhang, Y.; Xu, Y. Enantiomerically pure lanthanide-organic polytungstates exhibiting two-photon absorption properties. Inorg. Chem. 2014, 53, 3269-3271.

    6. [6]

      (c) Li, S. J.; Zhang, X. P.; Liu, J.; Zheng, W.; Li, C. H. Synthesis and characterization of chiral 2,5-bis(4,5-pinene-2-pyridyl)pyrazine and its rhenium(I) complex. Chin. J. Inorg. Chem. 2013, 8, 1745-1752.

    7. [7]

      (d) Cai, K.; Zhang, L. N.; Han, L. Q.; Qu, F. Y. Synthesis, characterization and luminescence of a chiral MOF based on camphor derivative. Chem. J. Chin. U. 2013, 6, 1313-1317.

    8. [8]

      (3) (a) Dang, D. B.; An, B.; Bai, Y.; Zheng, G. S.; Niu, J. Y. Three-dimensional homochiral manganese-lanthanide frameworks based on chiral camphorates with multi-coordination modes. Chem. Commun. 2013, 49, 2243-2245.

    9. [9]

      (b) Wang, P. Y.; Dai, S. C.; Lin, W. F.; Wu, M. F.; Yang, H. B.; Zhou, P.; Zou, J. P.; Guang, W. T.; Luo, X. B. Homochiral helical coordination polymers constructed from achiral ligand of 5-(3-pyridyl)-isophthalic acid. Inorg. Chim. Acta 2013, 404, 155-159.

    10. [10]

      (c) Wan, H. X.; Ju, W. W.; Zhang, Y.; Xu, Y. Synthesis, structures and properties of the 3D compounds L-chiral helical chains. Chin. J. Inorg. Chem. 2014, 1, 85-92.

    11. [11]

      (4) (a) Yang, S. S.; Wang, X. F.; Zhang, M. X.; Chen, X.; Xiao, F.; Zhu, Y.; Liu, Y. J.; Huang, K. L. Synthesis, crystal structure and photoluminescence of a new Cd-organic meso-helicate. Chin. J. Struct. Chem. 2013, 8, 1180-1184.

    12. [12]

      (b) Zhang, Q. F.; Zhang, H. N.; Zeng, S. Y.; Sun, D. Z.; Zhang, C. A chain-based 2D cobalt(II) coordination polymer with a ""crab-like"" flexible dicarboxylate ligand: a weak ferromagnetic single-chain magnet. Chem. Asian J. 2013, 8, 1985-1989.

    13. [13]

      (c) Li, B.; Fan, H. T.; Wang, Z. Q.; Feng, C. Q. Syntheses, structure and thermal analysis of a cobalt coordination polymer with multiform helical features based on flexible iododicarboxylate ligand and n-donor ancillary ligand. Chin. J. Struct. Chem. 2015, 5, 735-740.

    14. [14]

      (d) Wu, D. Q.; Meng, W.; Zhang, L.; Liu, L.; Hou, H. W.; Fan, Y. T. Construction of four coordination polymers with helical character based on a flexible bis(triazole) derivative and dicarboxylate coligands. Inorg. Chim. Acta 2013, 405, 318-325.

    15. [15]

      (5) Wang, X. W.; Han, L.; Cai, T. J.; Zheng, Y. Q.; Chen, J. Z.; Deng, Q. A novel chiral doubly folded interpenetrating 3D metal-organic framework based on the flexible zwitterionic ligand. Cryst. Growth Des. 2007, 7, 1027-1030.

    16. [16]

      (6) (a) Sheldrick, G. M. Shelxs97, A Program for the Solution of Crystal Structures from X-ray Data. University of Göttingen, Germany 1997.

    17. [17]

      (b) Sheldrick, G. M. Shelxl97, A Program for the Refinement of Crystal Structures from X-ray Data. University of Göttingen, Germany 1997.

    18. [18]

      (7) Huang, K. L.; He, Y. T.; Wang, D. Q.; Pan, W. L.; Hu, C. W. [Cd(mpdc)]: a novel five-connected 3-D zeolite-like framework with intersecting helical chains in diamondoid net of CdII (mpdc = 2,6-dimethylpyridine-3,5-dicarboxylate). J. Mol. Struct. 2007, 832, 146-149.

    19. [19]

      (8) Chen, X.; Zhang, M. X.; Huang, K. L.; Xiao, F.; Zhang, X. P. A 3-connected 3D microporous metal-organic framework with intersected channels and rare deh topology. Chin. J. Struct. Chem. 2014, 12, 1831-1835.

    20. [20]

      (9) Yuan, H. Y.; Han, M. M.; Jiang, X. R.; Jiang, Z. G.; Feng, Y. L. Six new coordination polymers constructed by 3-carboxyl-5-oxycarboxymethylpyridinio-1-carboxylate: crystal structures, topologies, photoluminescent and magnetic properties. J. Solid. State Chem. 2013, 202, 191-199.

    21. [21]

      (10) Sen, R.; Mal, D.; Brandao, P.; Ferreira, R. A. S.; Lin, Z. Cadmium-furandicarboxylate coordination polymers prepared with different types of pyridyl linkers: synthesis, divergent dimensionalities, and luminescence study. Cryst. Growth Des. 2013, 13, 5272-5281.

    22. [22]

      (11) Ke, X. J.; Li, D. S.; Zhao, J.; Bai, L.; Yang, J. J.; Duan, Y. P. Unique entangling CdII-framework featuring 2D → 3D inclined polycatenate motif and (4,6)-connected self-catenated H-bonding topology. Inorg. Chem. Commun. 2012, 21, 129-132.

    23. [23]

      (12) Lu, W. G.; Gu, J. Z.; Jiang, L.; Tan, M. Y.; Lu, T. B. Achiral and chiral coordination polymers containing helical chains: the chirality transfer between helical chains. Cryst. Growth Des. 2008, 1, 192-199.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    3. [3]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    4. [4]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    8. [8]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    9. [9]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    10. [10]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    11. [11]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    12. [12]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    15. [15]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    16. [16]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    17. [17]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    18. [18]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    19. [19]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    20. [20]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

Metrics
  • PDF Downloads(0)
  • Abstract views(706)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return