Citation: CHEN Hong, LIU Ming-Guo. New Efficient Copper(II)-catalyzed Direct Access to Primary Amide from Aldehyde under Solvothermal Condition and Related Crystal Structure Study[J]. Chinese Journal of Structural Chemistry, ;2016, 35(5): 796-804. doi: 10.14102/j.cnki.0254-5861.2011-0926 shu

New Efficient Copper(II)-catalyzed Direct Access to Primary Amide from Aldehyde under Solvothermal Condition and Related Crystal Structure Study

  • Corresponding author: LIU Ming-Guo, 
  • Received Date: 4 August 2015
    Available Online: 29 December 2015

    Fund Project:

  • Two 1-methyl-1H-benzo[d]imidazole derivatives, C18H14CuN4O4·C4H8O2 (1) and C9H9N3O (2), have been synthesized and characterized by NMR, MS, FT-IR, elementary analysis and X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic, space group P21/n with a = 9.6888(3), b = 7.3772(2), c = 14.3277(4) Å, β = 95.819(3)°, V = 1018.81(5) Å3, Mr = 501.98, Z = 2, Dc = 1.636 g/cm3, F(000) = 518, μ = 1.123 mm-1, Moradiation (λ = 0.71073 Å), the final R = 0.0325 and wR = 0.0859 for 1821 observed reflections with I> 2σ(I). Compound 2 crystallizes in monoclinic, space group C2/c with a = 14.2908(14), b = 14.4268(13), c = 8.4802(6) Å, β = 108.513(9)°, V = 1657.9(3) Å3, Mr = 175.19, Z = 8, Dc = 1.404 g/cm3, F(000) = 736, μ = 0.097 mm-1, Moradiation (λ = 0.71073 Å), the final R = 0.0563 and wR = 0.1531 for 1231 observed reflections with I> 2σ(I). Intermolecular (N-H…N, N-H…O) and intramolecular (N-H…N, C-H…O) hydrogen bonds, as well as C-H…π and π-π stacking interactions, help to stabilize the crystal structure of compound 2.
  • 加载中
    1. [1]

      (1) (a) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY 1960; (b) Chen, X. M.; Tong, M. L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 2007, 40, 162-170.

    2. [2]

      (2) (a) Constable, E. C. Metals and Ligand Reactivity. VCH: Weinheim 1996, pp 245-262; (b) Burgess, J.; Hubbard, C. D. Ligand substitution reactions. Adv. Inorg. Chem. 2003, 54, 71-155; (c) Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses. Coord. Chem. Rev. 2005, 249, 1201-1219; (d) Evans, O. R.; Lin, W. B. Crystal engineering of NLO materials based on metal-organic coordination networks. Acc. Chem. Res. 2002, 35, 511-522.

    3. [3]

      (3) Spiess, H. W. Overview of NMR of Bulk Polymers. NMR Spectroscopy of Polymers: Innovative Strategies for Complex Macromolecules; ACS Symposium Series; American Chemical Society: Washington, DC 2011; Chapter 2, pp 17-18.

    4. [4]

      (4) Loudon, M. G. Organic Chemistry. Oxford University Press: New York, NY 2002, pp. 982-983.

    5. [5]

      (5) For reviews of amide formation, see: (a) Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606-631; (b) Montalbetti, C.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827-10852.

    6. [6]

      (6) Sheldon, R. A. Consider the environmental quotient. Chemtech. 1994, 24, 38-47.

    7. [7]

      (7) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L. Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Key green chemistry research areas — a perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411-420.

    8. [8]

      (8) Field, L.; Hughmark, P. B.; Shumaker, S. H.; Marshall, W. S. Isomerization of aldoximes to amides under substantially neutral conditions. J. Am. Chem. Soc. 1961, 83, 1983-1987.

    9. [9]

      (9) (a) Fujiwara, H.; Ogasawara, Y.; Yamaguchi, K.; Mizuno, N. A one-pot synthesis of primary amides from aldoximes or aldehydes in water in the presence of a supported rhodium catalyst. Angew. Chem., Int. Ed. 2007, 46, 5202-5205; (b) Kim, M.; Lee, J.; Lee, H. Y.; Chang, S. Significant self-acceleration effects of nitrile additives in the rhodium-catalyzed conversion of aldoximes to amides: a new mechanistic aspect. Adv. Synth. Catal. 2009, 351, 1807-1812; (c) Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Yamaguchi, K.; Mizuno, N. A supported rhodium hydroxide catalyst: preparation, characterization, and scope of the synthesis of primary amides from aldoximes or aldehydes. Chem. Asian J. 2008, 3, 1715-1721.

    10. [10]

      (10) Owston, N. A.; Parker, A. J.; Williams, J. M. Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org. Lett. 2007, 9, 3599-3601.

    11. [11]

      (11) Owston, N. A.; Parker, A. J.; Williams, J. M. Iridium-catalyzed conversion of alcohols into amides via oximes. Org. Lett. 2007, 9, 73-75.

    12. [12]

      (12) Mishra, A.; Ali, A.; Upreti, S.; Gupta, R. Cobalt coordinationinduced functionalized molecular clefts: isolation of {CoIII-ZnII} heterometallic complexes and their applications in beckmann rearrangement reactions. Inorg. Chem. 2008, 47, 154-161.

    13. [13]

      (13) Ramon, R. S.; Bosson, J.; Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Au/Ag-cocatalyzed aldoximes to amides rearrangement under solvent-and acid-free conditions. J. Org. Chem. 2010, 75, 1197-1202.

    14. [14]

      (14) Ali, M. A.; Punniyamurthy, T. Palladium-catalyzed one-pot conversion of aldehydes to amides. Adv. Synth. Catal. 2010, 352, 288-292.

    15. [15]

      (15) Brandenburg, K. DIAMOND, Version 3.2i; Crystal Impact GbR: Bonn, Germany.

    16. [16]

      (16) Valdez-Padilla, D.; Rodríguez-Morales, S.; Hernández-Campos, A.; Hernández-Luis, F.; Yépez-Mulia, L.; Tapia-Contreras, A.; Castillo R. Synthesis and antiprotozoal activity of novel 1-methylbenzimidazole derivatives. Bioorg. Med. Chem. 2009, 17, 1724-1730.

    17. [17]

      (17) Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany 1996.

    18. [18]

      (18) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K. Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.

    19. [19]

      (19) (a) Sheldrick, G. M. SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen: Germany 1997; (b) Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen: Germany 1997.

    20. [20]

      (20) (a) Chen, Y. M.; Li, L.; Chen, Z.; Liu, Y. L.; Hu, H. L.; Chen, W. Q.; Liu, W.; Li, Y. H.; Lei, T.; Cao, Y. Y.; Kang, Z. H.; Lin, M. S.; Li, W. Metal-mediated controllable creation of secondary-, tertiary-and quaternary-carbon centers: a powerful strategy for synthesis of iron, cobalt and copper complexes with in situ generated substituted 1-pyridineimidazo-[1,5-a]pyridine ligands. Inorg. Chem. 2012, 51, 9705-9713; (b) Ganguly, N. C.; Roy, S.; Monda, P. An efficient copper(II)-catalyzed direct access to primary amides from aldehydes under neat conditions. Tetra. Lett. 2012, 53, 1413-1416.

    21. [21]

      (21) (a) Ramesh, K.; Murthy, S. N.; Karnakar, K.; Reddy, K. H. V.; Nageswar, Y. V. D.; Vijay, M.; Devi, B. L. A.; Prasad, R. B. N. A mild and expeditious synthesis of amides from aldehydes using bioglycerol-based carbon as a recyclable catalyst. Tetra. Lett. 2012, 53, 2636-2638; (b) Martínez-Asencio, A.; Yus, M.; Ramon, D. J. Copper(II) acetate-catalyzed one-pot conversion of aldehydes into primary amides through a Beckmann-type rearrangement. Tetrahedron 2012, 68, 3948-3951; (c) Sharma, S. K.; Bishopp, S. D.; Allen, C. L.; Lawrence, R.; Bamford, M. J.; Lapkin, A. A.; Plucinski, P.; Watson, R. J.; Williams, J. M. Copper-catalyzed rearrangement of oximes into primary amides. Tetra. Lett. 2011, 52, 4252-4255.

    22. [22]

      (22) Allen, C. L.; Davulcu, S.; Williams, J. M. J. Catalytic acylation of amines with aldehydes or aldoximes. Org. Lett. 2010, 12, 5096-5099.

    23. [23]

      (23) Lee, J.; Kim, M.; Chang, S.; Lee, H. Y. Anhydrous hydration of nitriles to amides using aldoximes as the water source. Org. Lett. 2009, 11, 5598-5601.

    24. [24]

      (24) (a) Yang, Z. W.; Aygul, N.; Liu, X. R.; Zhao, S. S.; Zhao, W. Q.; Yang, S. L. Structure of copper chelate of 2-hydroxy-4-methylthiobutanoic acid as trace mineral additive in animal feeding. Chin. J. Struct. Chem. 2015, 34, 147-153; (b) Wu, N. N.; Chen, C. N.; Huang, D. G. Activation of nitromethane to cyanide by a mononuclear Cu(II) complex. Chin. J. Struct. Chem. 2014, 33, 1643-1648; (c) Luo, T. T.; Hsu, L. Y.; Su, C. C.; Ueng, C. H.; Tsai, T. C.; Lu, K. L. Deliberate design of a 3D homochiral CuII/L-met/AgI coordination network based on the distinct soft-hard recognition principle. Inorg. Chem. 2007, 46, 1532-1534; (d) Ou, C. C.; Powers, D. A.; Thich, J. A.; Felthouse, T. R.; Hendrickson, D. N.; Potenza, J. A.; Schugar, H. J. Molecular structure and magnetic properties of trans-bis(L-methioninato)copper(II), Cu(C5H10NO2S)2. Inorg. Chem. 1978, 17, 34-40; (e) Veidis, M. V.; Palenik, G. J. The structure of a copper complex of an essential sulphur-containing amino-acid: bis(methioninato)copper(II). J. Chem. Soc. D 1969, 1277-1278.

    25. [25]

      (25) (a) Chen, X. M.; Cai, J. W. The Single Crystal Structure Analysis Principles and Practice. 2rd Ed. Science Press: China 2007; (b) Glusker, J. P.; Lewis, M.; Rossi, M. Crystal Structure Analysis for Chemists and Biologists. New York: VCH Publisher Inc. 1995, 406-407; (c) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and coordination complexes of the d-and f-block metals. J. Chem. Soc. Dalton Trans. II 1989, S1-S83.

    26. [26]

      (26) Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 3885-3896.

  • 加载中
    1. [1]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    2. [2]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    5. [5]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    6. [6]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    7. [7]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    8. [8]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    9. [9]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    10. [10]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    11. [11]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    12. [12]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    13. [13]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    16. [16]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    17. [17]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    18. [18]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    19. [19]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    20. [20]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

Metrics
  • PDF Downloads(0)
  • Abstract views(751)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return