Citation: XIA Li, ZHU Yu, WANG Yan-Mei, LIU Pan, XIE Ji-Min. Syntheses, Structures, Fluorescence and Heterogeneous Catalysis of Coordination Polymers with 4-Benzoimidazol-1-yl-methyl Benzoic Acid and 2,2'-Dipyridine[J]. Chinese Journal of Structural Chemistry, ;2016, 35(4): 577-585. doi: 10.14102/j.cnki.0254-5861.2011-0909 shu

Syntheses, Structures, Fluorescence and Heterogeneous Catalysis of Coordination Polymers with 4-Benzoimidazol-1-yl-methyl Benzoic Acid and 2,2'-Dipyridine

  • Received Date: 25 July 2015
    Available Online: 5 November 2015

    Fund Project: This project was supported by the National Natural Science Foundation of China (21171075/B010303, 21103073/B030201, 21306067/B060903) (21171075/B010303, 21103073/B030201, 21306067/B060903)

  • Two coordination polymers called[Ni(L)2]n (1) and[Ni(2,2'-bpy)22(H2O)]n (2) (HL=4-benzoimidazol-1-yl-methyl benzoic acid, 2,2'-bpy=2,2'-dipyridine) were synthesized by solvothermal reaction simultaneously and characterized by elemental analyses, thermogravimetric analysis, X-ray powder diffraction, IR spectroscopy and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a=14.673(3), b=10.773(2), c=16.566(3) Å, V=2559.2(8) Å3, Z=4 and F(000)=1160. 2 also crystallizes in monoclinic system, space group C2/c with a=15.404(3), b=12.652(3), c=6.5362(13) Å, V=1246.2(5) Å3, Z=4 and F(000)=712. The bridging L ligand connects the Ni cations into a 2D network in complex 1, while 2 shows a 1D structure formed through the two O atoms of SO42- ions connecting the molecule. The catalytic properties indicate that complex 1 shows good catalytic activities for the cyanosilylation of 4-chlorobenzaldehyde. In addition, fluorescence property of complex 1 which quenches the excitation intensity in solid state was investigated at room temperature.
  • 加载中
    1. [1]

      (1) (a) Freeman, D. E.; Jenkins, D. M.; Lavarone, A. T.; Long, J. R. A redox-switchable single-molecule magnet incorporating [Re(CN)7]3-. J. Am. Chem. Soc. 2008, 130, 2884-2885. (b) Lin, J. B.; Zhang, J. P.; Chen, X. M. Nonclassical active site for enhanced gas sorption in porous coordination polymer. J. Am. Chem. Soc. 2010, 132, 6654-6656. (c) Matsuda, R.; Tsujino, T.; Sato, H.; Kubota, Y.; Morishige, K.; Takata, M.; Kitagawa, S. Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chem. Sci. 2010, 1, 315-321. (d) Liu, B.; Fan, L. J.; Liu, Y. Y.; Yang, J.; Ma, J. F. Syntheses and structures of Cd(Ⅱ) and Co(Ⅱ) compounds of 4-[(3-pyridyl) methylamino]benzoate anion. J. Coord. Chem. 2011, 64, 413-423.

    2. [2]

      (2) Zhu, X.; Ge, H. Y.; Zhang, Y. M.; Li, B. L.; Zhang, Y. Self-assembly of five cobalt(Ⅱ) coordination polymers from 1,2-bis(1,2,4-triazol-1-yl)ethane.

    3. [3]

      Polyhedron 2006, 25, 1875-1883.

    4. [4]

      (3) Tong, M. L.; Ye, B. H.; Cai, J. W.; Chen, X. M.; Ng, S. W. Tricarbonyl[1,1,1-tris(dimethylphosphinomethyl)ethane]chromium(0),-molybdenum(0) and-tungsten(0) complexes. Inorg. Chem. 1998, 37, 2645-2650.

    5. [5]

      (4) Su, C. Y.; Cai, Y. P.; Chen, C. L.; Smith, M. D.; Kaim, W. Ligand-directed molecular architectures: self-assembly of two-dimensional rectangular metallacycles and three-dimensional trigonal or tetragonal prisms. J. Am. Chem. Soc. 2003, 125, 8595-8613.

    6. [6]

      (5) Bu, X. H.; Xie, Y. B.; Li, J. R.; Zhang, R. H. Adjusting the frameworks of silver(I) complexes with new pyridyl thioethers by varying the chain lengths of ligand spacers, solvents, and counteranions. Inorg. Chem. 2003, 42, 7422-7430.

    7. [7]

      (6) Meng, X. R.; Song, Y. L.; Hou, H. W.; Han, H. Y.; Xiao, B.; Fan, Y. T.; Zhu, Y. Hydrothermal syntheses, crystal structures, and characteristics of a series of Cd-btx coordination polymers (btx = 1,4-bis(triazol-1-ylmethyl)benzene). Inorg. Chem. 2004, 43, 3528-3536.

    8. [8]

      (7) Du, M.; Bu, X. H.; Guo, Y. M.; Liu, H.; Batten, S. R.; Ribas, J. First CuⅡ diamondoid net with 2-fold interpenetrating frameworks, the role of anions in the construction of the supramolecular arrays. Inorg. Chem. 2002, 41, 4904-4908.

    9. [9]

      (8) Guo, Z. G.; Cao, R.; Li, X. J.; Yuan, D. Q.; Bi, W. H.; Zhu, X. D.; Li, Y. F. A series of cadmium(Ⅱ) coordination polymers synthesized at different pH values. Inorg. Chem. 2007, 46, 740-749.

    10. [10]

      (9) (a) Kuai, H. W.; Cheng, X. C.; Zhu, X. H. Synthesis, structure, and properties of a coordination polymer based on N- and O-donors. J. Coord. Chem. 2011, 64, 1636-1644. (b) Kuai, H. W.; Cheng, X. C.; Zhu X. H. Synthesis, characterization, and crystal structures of two coordination polymers from 3,5-bis(pyridin-4-ylmethyl) aminobenzoic acid. J. Coord. Chem. 2011, 64, 3323-3332. (c) Kuai, H. W.; Cheng, X. C.; Feng, L. D.; Zhu, X. H. Synthesis, characterization, and crystal structure of three coordination polymers from 5-(pyridin-2-ylmethyl)aminoisophthalic acid. Z. Anorg. Allg. Chem. 2011, 637, 1560-1562.

    11. [11]

      (10) Ohmori, O.; Fujita, M. Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(Ⅱ)-(4,4'-bipyridine) square grid complex. Chem. Commun. 2004, 14, 1586-1587.

    12. [12]

      (11) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Functionality in isoreticular metal-organic frameworks. Science. 2002, 295, 469-472.

    13. [13]

      (12) Devic, T.; Serre, C.; Audebrand, N.; Marrot, J.; Férey, G. A 3-D lanthanide-based metal organic framework with large one-dimensional tunnels and a high surface area. J. Am. Chem. Soc. 2005, 127, 12788-12789.

    14. [14]

      (13) Chen, S. S.; Zhao, Y.; Fan, J.; Okamura, T. A.; Bai, Z. S.; Chen, Z. H.; Sun, W. Y. Construction of coordination frameworks based on 4-imidazolyl tecton 1,4-di(1H-imidazol-4-yl)benzene and varied carboxylic acids. CrystEngComm. 2012, 14, 3564-3576.

    15. [15]

      (14) Nagarkar, S. S.; Chaudhari, A. K.; Ghosh, S. K. Selective CO2 adsorption in a robust and water-stable porous coordination polymer with new network topology. Inorg. Chem. 2012, 51, 572-576.

    16. [16]

      (15) Roesky, H. W.; Andruh, M. The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures.: a study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coord. Chem. Rev. 2003, 236, 91-119.

    17. [17]

      (16) Barnett, S. A.; Champness, N. R. Structural diversity of building-blocks in coordination framework synthesis-combining M(NO3)2 junctions and bipyridyl ligands. Coord. Chem. Rev. 2003, 246, 145-168.

    18. [18]

      (17) Pan, Z. R.; Zheng, H. G.; Wang, T. W.; Song, Y.; Li, Y. Z.; Guo, Z. J.; Batten, S. R. Hydrothermal synthesis, structures, and physical properties of four new flexible multicarboxylate ligands-based compounds. Inorg. Chem. 2008, 47, 9528-9536.

    19. [19]

      (18) Xia, S. Q.; Hu, S. M.; Dai, J. C.; Wu, X. T.; Fu, Z. Y.; Zhang, H. J.; Du, W. X. Syntheses and structures of 1D, 2D, 3D cadmium(Ⅱ) coordination polymers with oxalate and aromatic co-ligands. Polyhedron 2004, 23, 1003-1009.

    20. [20]

      (19) (a) Fan, J.; Hanson, B. E. Novel zinc phosphate topologies defined by organic ligands. Inorg. Chem. 2005, 44, 6998-7008. (b) Xu, G. C.; Hua, Q.; Okamura, T.; Bai, Z. S.; Ding, Y. J.; Huang, Y. Q.; Liu, G. X.; Sun, W. Y. Cadmium(Ⅱ) coordination polymers with flexible tetradentate ligand 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene: anion effect and reversible anion exchange property. CrystEngComm. 2009, 11, 261-270.

    21. [21]

      (20) (a) Liu, Y. Y.; Ma, J. F.; Yang, J. Syntheses and characterization of six coordination polymers of zinc(Ⅱ) and cobalt(Ⅱ) with 1,3,5-benzenetricarboxylate anion and bis(imidazole) ligands. Inorg. Chem. 2007, 46, 3027-3037. (b) Tian, Z. F.; Lin, J. G.; Su, Y.; Wen, L. L.; Liu, Y. M.; Zhu, H. Z.; Meng, Q. J. Flexible ligand, structural, and topological diversity: isomerism in Zn(NO3)2 coordination polymer. Cryst. Growth Des. 2007, 7, 1863-1867. (c) Hua, Q.; Zhao, Y.; Xu, G. C.; Chen, M. S.; Su, Z.; Cai, K.; Sun, W. Y. Synthesis, structures, and properties of zinc(Ⅱ) and cadmium(Ⅱ) complexes with 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene and multicarboxylate ligand. Cryst. Growth Des. 2010, 10, 2553-2562.

    22. [22]

      (21) Sheldrick, G. M. SHELXS-97, Program for Automatic Solution of Crystal Structures. University of Goettingen, Germany 1997.

    23. [23]

      (22) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.

    24. [24]

      (23) Zhu, Y.; Xia, C. K.; Meng, S. C. Syntheses, structures, properties and DFT calculations of coordination polymers constructed by 2,6-bis(benzimidazolyl)pyridine. Polyhedron 2013, 61, 181-187.

    25. [25]

      (24) Zheng, S. L.; Yang, J H.; Yu, X. L.; Chen, X. M.; Wong, W. T. Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2,2'-dihydroxy-1,1'-binaphthalenyl-3,3'-dicarboxylate. Inorg. Chem. 2004, 43, 830-838.

    26. [26]

      (25) Kajiwara, T.; Higuchi, M.; Yuasa, A.; Higashimura, H.; Kitagawa, S. One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer. Chem. Commun. 2013, 49, 10459-10461.

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    8. [8]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    9. [9]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    19. [19]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    20. [20]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

Metrics
  • PDF Downloads(0)
  • Abstract views(985)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return