Citation: FAN Yi-Kang, XIE Bin, XIE Feng, WU Wei-Ping, ZOU Li-Ke, NAREN Ge-Ri-Lea, WEI Jiana. Two 3D Metal-organic Frameworks with 4-Fold[2+2]-type Interpenetrated hms Nets Based on a Flexible Tricarboxylic Acid[J]. Chinese Journal of Structural Chemistry, ;2016, 35(4): 605-614. doi: 10.14102/j.cnki.0254-5861.2011-0898 shu

Two 3D Metal-organic Frameworks with 4-Fold[2+2]-type Interpenetrated hms Nets Based on a Flexible Tricarboxylic Acid

  • Received Date: 16 July 2015
    Available Online: 21 October 2015

    Fund Project: Sichuan University of Science and Engineering (Y2014018) (LZJ14201)

  • Two 3D 4-fold interpenetrated metal-organic frameworks,[Mn(L)(bpy)]n (1) and[Cu(HL)(bpy)]n (2) (H3L=4,4',4''-(benzene-1,3,5-triyl-tri(methyleneoxy)) tribenzoic acid, bpy=4,4'-bipyridine), were synthesized under hydrothermal conditions, and characterized by element analyses, IR spectra, thermogravimetric analyses, X-ray powder diffraction and magnetic property studies. The single-crystal X-ray analyses revealed that 1 and 2 are homogeneous. 2 crystallizes in monoclinic, space group Cc with a=26.794(2), b=11.6346(10), c=21.4614(18) Å, β=91.570(2)°, V=6687.9(10) Å3, Z=8, Mr=736.59, Dc=1.463 g·cm-3, μ=0.458 mm-1, Rint=0.0524, F(000)=3040, the final R=0.0844 and wR=0.2266 for 8092 observed reflections (I > 2σ(I)). 2 crystallizes in monoclinic, space group Cc with a=27.609(12), b=11.126(10), c=21.490(9) Å, β=92.131(2)°, V=6597(5) Å3, Z=8, Mr=746.21, Dc=1503 g·cm-3, μ=0.726 mm-1, Rint=0.0542, F(000)=3080, the final R=0.0681 and wR=0.1831 for 6777 observed reflections (I>2σ(I)). Two compounds are 3D[2+2]-type 4-fold interpenetrated frameworks with (63)(69.8) hms topology. The magnetic study of compound 2 shows the presence of weak antiferromagnetic interaction between the Cu ions in 2.
  • 加载中
    1. [1]

      (1) Pan, M.; Su, C. Y. Coordination assembly of Borromean structures. Cryst. Eng. Comm. 2014, 16, 7847-7859.

    2. [2]

      (2) Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468-5512.

    3. [3]

      (3) Zhang, W. X.; Liao, P. Q.; Lin, R. B.; Wei, Y. S.; Zeng, M. H.; Chen, X. M. Metal cluster-based functional porous coordination polymers. Coord. Chem. Rev. 2015, 293-294, 263-278.

    4. [4]

      (4) Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-584.

    5. [5]

      (5) Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.; Yu, S. C. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011-6061.

    6. [6]

      (6) Li, P.; He, Y. B.; Arman, H. D.; Krishna, R.; Wang, H. L.; Weng, L. H.; Chen, B. L. A microporous six-fold interpenetrated hydrogen bonded organic framework for highly selective separation of C2H4/C2H6. Chem. Commun. 2014, 50, 13081-13084.

    7. [7]

      (7) Singh, D.; Nagaraja, C. M. A luminescent 3D interpenetrating metal-organic framework for highly selective sensing of nitrobenzene. Dalton Trans. 2014, 43, 17912-17915.

    8. [8]

      (8) Li, D. S.; Wu, Y. P.; Zhang, J.; Lu, J. Y. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coord. Chem. Rev. 2014, 261, 1-27.

    9. [9]

      (9) Qin, L.; Ju, Z. M.; Wang, Z. J.; Meng, F. D.; Zheng, H. G.; Chen, J. X. Interpenetrated metal-organic framework with selective gas adsorption and luminescent properties. Cryst. Growth Des. 2014, 14, 2742-274.

    10. [10]

      (10) Pang, L. Y.; Yang, G. P.; Jin, J. C.; Kang, M.; Fu, A. Y.; Wang, Y. Y.; Shi, Q. Z. A rare L1D+R1D→3D luminescent dense polymer as multifunctional sensor to nitro aromatic compounds, Cu2+, and bases. Cryst. Growth Des. 2014, 14, 2954-2961.

    11. [11]

      (11) Chen, D. M.; Zhang, X. P.; Shi, W.; Cheng, P. Tuning two-dimensional layer to three-dimensional pillar-layered metal-organic frameworks:polycatenation and interpenetration behaviors. Cryst. Growth Des. 2014, 14, 6261-6268.

    12. [12]

      (12) Lucia, C.; Gianfranco, C.; Davide, M. P.; Tatiana, G. M.; Vladislav, A. B. Entangled two-dimensional coordination networks:a general survey. Chem. Rev. 2014, 114, 7557-7580.

    13. [13]

      (13) Banerjee, K.; Biradha, K. Design and synthesis of mixed valent coordination networks containing pyridine appended terpyridyl, halide, and dicarboxylates. Cryst. Growth Des. 2012, 12, 4264-4274.

    14. [14]

      (14) Yang, J. X.; Qin, Y. Y.; Cheng, J. K.; Yao, Y. G. Tuning different kinds of entangled networks by varying N-donor ligands:from self-penetrating to multi-interpenetrating. Cryst. Growth Des. 2014, 14, 1047-1056.

    15. [15]

      (15) Liu, J. Q.; Wu, J.; Wang, Y. Y.; Lin, J. T.; Sakiyama, H. Different interpenetrated coordination polymers based on flexible dicarboxylate ligands:topological diversity and magnetism. Cryst. Eng. Comm. 2014, 16, 3103-3112.

    16. [16]

      (16) Ilioudis, C. A.; Tocher, D. A.; Steed, J. W. A highly efficient, preorganized macrobicyclic receptor for halides based on CH… and NH…anion interactions. J. Am. Chem. Soc. 2004, 126, 12395-12402.

    17. [17]

      (17) Mousa, A. S.; Samer, R. New multi-1,2,3-selenadiazole aromatic derivatives. Molecules 2005, 10, 1126-1134.

    18. [18]

      (18) Förster, S.; Seichter, W.; Weber, E. Synthesis and structures of three- and hexa-armed benzene derivatives featuring lateral benzoic ester and benzoic acid functions. Z. Naturforsch. 2011, 66b, 939-946.

    19. [19]

      (19) Sheldrick, G. M. SHELXTL NT Version 5.1, Program for Solution and Refinement of Crystal Structures. University of Göttingen:Germany 1997.

    20. [20]

      (20) Zhou, L.; Zhang, J.; Lia, Y. Z.; Du, H. B. Synthesis and properties of four coordination polymers built from a semi-rigid tripod carboxylic acid. Cryst. Eng. Comm. 2013, 15, 8989-8997.

    21. [21]

      (21) Zhan, C.; Zou, C.; Kong, G. Q.; Wu, C. D. Four honeycomb metal-organic frameworks with a flexible tripodal polyaromatic acid. Cryst. Growth Des. 2013, 13, 1429-1437.

    22. [22]

      (22) Tian, D.; Chen, Q.; Li, Y.; Zhang, Y. H.; Chang, Z.; Bu, X. H. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks. Angew. Chem. Int. Ed. 2014, 53, 837-841.

    23. [23]

      (23) Xue, L. P.; Chang, X. H.; Ma, L. F.; Wang, L. Y. Four d10 metal coordination polymers based on bis(2-methyl imidazole) spacers:syntheses, interpenetrating structures and photoluminescence properties. RSC. Adv. 2014, 4, 60883-60890.

    24. [24]

      (24) Liu, C.; Ding, Y. B.; Shi, X. H.; Zhang, D.; Hu, M. H.; Yin, Y. G.; Li, D. Interpenetrating metal-organic frameworks assembled from polypyridine ligands and cyanocuprate catenations. Cryst. Growth Des. 2009, 9, 1275-1277.

    25. [25]

      (25) Shen, J. J.; Li, M. X.; Wang, Z. X.; Duan, C. Y.; Zhu, S. R.; He, X. Unexpected 4-fold[2+2] interpenetration and polycatenation behaviors in porous luminescent zinc metal-organic frameworks constructed from flexible 3,5-bis(4-pyridylmethoxy)benzoate ligand. Cryst. Growth Des. 2014, 14, 2818-2830.

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    4. [4]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    5. [5]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    6. [6]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    10. [10]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    11. [11]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    12. [12]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    13. [13]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    14. [14]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    19. [19]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    20. [20]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

Metrics
  • PDF Downloads(0)
  • Abstract views(936)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return