Citation: WANG Bin, LI Qian-Qian, WANG Jian-Fu, HUANG Xin, ZHANG Yong-Fan. Electronic Structures and Chemical Bonding of NbS6-/0 Clusters[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 175-184. doi: 10.14102/j.cnki.0254-5861.2011-0894 shu

Electronic Structures and Chemical Bonding of NbS6-/0 Clusters

  • Corresponding author: WANG Bin, 
  • Received Date: 12 July 2015
    Available Online: 21 December 2015

    Fund Project: Foundation of Fuzhou University (2012-XY-6) (2013J06004)

  • Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations were employed to investigate the structural and electronic properties of NbS6- and NbS6 clusters. Generalized Koopmans’ theorem was applied to predict the vertical detachment energies and simulate the photoelectron spectra (PES). The current study indicated that various types of sulfur ligands (i.e., S2-, S2-, S22- and S32-) were presented in the lowest-energy structures of NbS6-/0. The ground-state structure of NbS6- is shown to be Cs (1A') symmetry with a terminal S2-, a side-on bound S22- and a S32- ligands. Molecular orbital analyses were performed to analyze the chemical bonding in NbS6-/0 clusters and elucidate their structural and electronic properties.
  • 加载中
    1. [1]

      (1) Stiefel, E. I.; Matsumoto, K. Eds. Transition Metal Sulfur Chemistry, Biological and Industrial Significance. American Chemical Society: Washington, DC 1997.

    2. [2]

      (2) Liu, Z. L.; Cai, L. C.; Zhang, X. L. Novel high pressure structures and superconductivity of niobium disulfide. J. Alloy. Compd. 2014, 610, 472-477.

    3. [3]

      (3) Abramova, G. M.; Petrakovskii, G. A. Metal-insulator transition, magnetoresistance, and magnetic properties of 3d-sulfides (review). Low. Temp. Phys. 2006, 32, 725-734.

    4. [4]

      (4) Eijsbouts, S.; Mayo, S. W.; Fujita, K. Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl. Catal. A-Gen. 2007, 322, 58-66.

    5. [5]

      (5) Geantet, C.; Afonso, J.; Breysse, M.; Allali, N.; Danot, M. Niobium sulfides as catalysts for hydrotreating reactions. Catal. Today 1996, 28, 23-30.

    6. [6]

      (6) Danot, M.; Afonso, J.; Portefaix, J. L.; Breysse, M.; Des Courières, T. Catalytic properties of niobium sulphides in the conversion of nitrogen containing molecules. Catal. Today 1991, 10, 629-643.

    7. [7]

      (7) Lewis, D. A.; Kenney, C. N. Niobium disulphide as an isomerisation and hydrogenation catalyst in the presence of hydrogen sulphide. Trans. Inst. Chem. Eng. 1981, 59, 186-195.

    8. [8]

      (8) Gaborit, V.; Allali, N.; Geantet, C.; Breysse, M.; Vrinat, M.; Danot, M. Niobium sulfide as a dopant for hydrotreating NiMo catalysts. Catal. Today 2000, 57, 267-273.

    9. [9]

      (9) Afanasiev, P. The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts. J. Catal. 2010, 269, 269-280.

    10. [10]

      (10) Afanasiev, P.; Jobic, H.; Lorentz, C.; Leverd, P.; Mastubayashi, N.; Piccolo, L.; Vrinat, M. Low-temperature hydrogen interaction with amorphous molybdenum sulfides MoSx. J. Phys. Chem. C 2009, 113, 4139-4146.

    11. [11]

      (11) Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262-1267.

    12. [12]

      (12) Duchet, J.; Van Oers, E.; De Beer, V.; Prins, R. Carbon-supported sulfide catalysts. J. Catal. 1983, 80, 386-402.

    13. [13]

      (13) Afanasiev, P.; Fischer, L.; Beauchesne, F.; Danot, M.; Gaborit, V.; Breysse, M. Preparation of the mixed sulfide Nb2Mo3S10 catalyst from the mixed oxide precursor. Catal. Lett. 2000, 64, 59-63.

    14. [14]

      (14) Afanasiev, P.; Bezverkhyy, I. Ternary transition metals sulfides in hydrotreating catalysis. Appl. Catal. A-Gen. 2007, 322, 129-141.

    15. [15]

      (15) (a) Wang, B.; Wu, N.; Zhang, X. B.; Huang, X.; Zhang, Y. F.; Chen, W. K.; Ding, K. N. Probing the smallest molecular model of MoS2 catalyst: S2 units in the MoSn-/0 (n = 1~5) clusters. J. Phys. Chem. A 2013, 117, 5632-5641.

    16. [16]

      (b) Wang, B.; Chen, W. J.; Zhao, B. C.; Zhang, Y. F.; Huang, X. Tetratungsten oxide clusters W4On-/0 (n = 10~13): structural evolution and chemical bonding. J. Phys. Chem. A 2010, 114, 1964-1972.

    17. [17]

      (c) Zhai, H. J.; Wang, B.; Huang, X.; Wang, L. S. Probing the electronic and structural properties of the niobium trimer cluster and its mono- and dioxides: Nb3On- and Nb3On (n = 0~2). J. Phys. Chem. A 2009, 113, 3866-3875.

    18. [18]

      (d) Zhai, H. J.; Wang, B.; Huang, X.; Wang, L. S. Structural evolution, sequential oxidation, and chemical bonding in tritantalum oxide clusters: Ta3On- and Ta3On (n = 1~8). J. Phys. Chem. A 2009, 113, 9804-9813.

    19. [19]

      (e) Wang, B.; Zhai, H. J.; Huang, X.; Wang L. S. On the electronic structure and chemical bonding in the tantalum trimer cluster. J. Phys. Chem. A 2008, 112, 10962-10967.

    20. [20]

      (16) (a) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 8 transition metal sulfide molecules. J. Phys. Chem. A 2009, 113, 5375-5384.

    21. [21]

      (b) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes. J. Phys. Chem. A 2009, 113, 3336-3343.

    22. [22]

      (c) Wang, X.; Liang, B.; Andrews, L. Infrared spectra and density functional theory calculations of coinage metal disulfide molecules and complexes. Dalton Trans. 2009, 21, 4190-4198.

    23. [23]

      (d) Gemming, S.; Tamuliene, J.; Seifert, G.; Bertram, N.; Kim, Y. D.; Ganteför, G. Electronic and geometric structures of MoxSy and WxSy (x = 1, 2, 4; y = 1~12) clusters. Appl. Phys. A 2006, 82, 161-166.

    24. [24]

      (e) Gemming, S.; Seifert, G.; Bertram, N.; Fischer, T.; Götz, M.; Ganteför, G. One-dimensional (Mo3S3)n clusters: building blocks of clusters materials and ideal nanowires for molecular electronics. Chem. Phys. Lett. 2009, 474, 127-131.

    25. [25]

      (f) Zhao, Y. C.; Yuan, J.; Zhang, Z. G.; Xu, H. G.; Zheng, W. Structures of manganese polysulfides: mass-selected photodissociation and density functional calculations. Dalton Trans. 2011, 40, 2502-2508.

    26. [26]

      (g) He, S. G.; Xie, Y.; Guo, Y.; Bernstein, E. Formation, detection, and stability studies of neutral vanadium sulfide clusters. J. Chem. Phys. 2007, 126, 194315.

    27. [27]

      (h) Tran, V. T.; Tran, Q. T.; Hendrickx, M. F. A. Geometric and electronic structures for MnS2-/0 clusters by interpreting the anion photoelectron spectrum with ouantum chemical calculations. J. Phys. Chem. A 2015, 119, 5626-5633.

    28. [28]

      (17) (a) Johnson, G. E.; Tyo, E. C.; Castleman, A. W. Jr. Cluster reactivity experiments: employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18108-18113.

    29. [29]

      (b) Waters, T.; Huang, X.; Wang, X. B.; Woo, H. K.; O’Hair, R. A. J.; Wedd, A. G.; Wang, L. S. Photoelectron spectroscopy of free multiply charged Keggin anions α-[P12O40]3- (M = Mo, W) in the gas phase. J. Phys. Chem. A 2006, 110, 10737-10741.

    30. [30]

      (c) Böhme, D. K.; Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem., Int. Ed. 2005, 44, 2336-2354.

    31. [31]

      (d) Castleman, A. W., Jr. Cluster structure and reactions: gaining insights into catalytic processes. Catal. Lett. 2011, 141, 1243-1253.

    32. [32]

      (18) Liang, B.; Andrews, L. Infrared spectra and density functional theory calculations of Group V transition metal sulfides. J. Phys. Chem. A 2002, 106, 3738-3743.

    33. [33]

      (19) (a) Yu, S. W.; Li, T. H.; Yao, L. F.; Yang, X. M.; Xie, X. G. Theoretical study on the reaction of NbS+ ( 3-, 1Γ) with COS in gas phase. J. Mol. Struc.

    34. [34]

      (Theochem.) 2009, 901, 249-257.

    35. [35]

      (b) Yu, S. W.; Li, T. H.; Yang, X. M.; Yin, L. Q.; Yao, L. F.; Xie, X. G. Theoretical study on the reaction of NbS+ ( 3-, 1Γ) with CO. Chin. Chem. Lett. 2009, 20, 755-758.

    36. [36]

      (20) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B. Gas-phase thermochemistry of the early cationic transition-metal sulfides of the second row: YS+, ZrS+, and NbS+. Int. J. Mass Spectrom. 2006, 249, 263-278.

    37. [37]

      (21) Sun, X.; Wang, J.; Wu, Z. Chemica bonding and electronic structure of 4d-metal monosulfides. J. Clust. Sci. 2009, 20, 525-534.

    38. [38]

      (22) Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372-1377.

    39. [39]

      (23) Lee, C.; Yang, W.; Parr, R. G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.

    40. [40]

      (24) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623-11627.

    41. [41]

      (25) (a) Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829-5835.

    42. [42]

      (b) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.

    43. [43]

      (c) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor. Chem. Acc. 1997, 97, 119-124. The exponents (included those of the polarization functions) and contraction coefficients can be retrieved from the following web-site: https://bse.pnl.gov/bse/portal.

    44. [44]

      (26) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123-141. ECP parameters for Nb were obtained from the following web-site: https://bse.pnl.gov/bse/portal.

    45. [45]

      (27) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Pseudopotentials of the Stuttgart/Dresden Group 1998, revision August 11, 1998; http://www.theochem.uni-stuttgart.de/pseudopotentiale.

    46. [46]

      (28) Martin, J. M. L.; Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114, 3408-3420.

    47. [47]

      (29) (a) Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.

    48. [48]

      (b) Woon, D. E.; Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358-1371.

    49. [49]

      (c) Dunning, T. H.; Peterson, K. A.; Wilson, A. K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114, 9244-9253.

    50. [50]

      (30) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098-3100.

    51. [51]

      (31) Perdew, J. P. Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys. Rev. B 1986, 33, 8822-8824.

    52. [52]

      (32) Purvis, G. D. III; Bartlett, R. J. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910-1918.

    53. [53]

      (33) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. III. An efficient reformulation of the closed shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys.1988, 89, 7382-7387.

    54. [54]

      (34) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479-483.

    55. [55]

      (35) Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-cluster methods with non-iterative triple excitations for restricted open-shell Hartree-fock and other general single-determinant reference functions. Energies and analytical gradients. J. Chem. Phys. 1993, 98, 8718-8733.

    56. [56]

      (36) Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291-352.

    57. [57]

      (37) Tozer, D. J.; Handy, N. C. Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarisabilities. J. Chem. Phys. 1998, 109, 10180-10189.

    58. [58]

      (38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. Pople, J. A. Gaussian 03; Revision D. 01; Gaussian, Inc.: Wallingford, CT 2004.

    59. [59]

      (39) Werner, H. J.; Knowles, P. J.; Manby, F. R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; O’Neill, D. P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A. MOLPRO, version 2010.1, a package of ab initio programs; see http://www.molpro.net.

    60. [60]

      (40) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38.

    61. [61]

      (41) (a) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F. III.; Nandi, S.; Ellison, G. B. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 2002, 102, 231-282.

    62. [62]

      (b) Wang, H. Q.; Li, H. F.; Kuang, X. Y. Probing the structural and electronic properties of small vanadium monoxide clusters. Phys. Chem. Chem. Phys. 2012, 14, 5272-5283.

    63. [63]

      (42) Wu, N.; Zhang, C. F.; Zhou, Q.; Huang, X.; Zhang, Y. F.; Ding, K. N.; Wang, B. DFT study on the electronic and structural properties of MoS6-/0 clusters. Chin. J. Struct. Chem. 2013, 32, 1046-1054.

    64. [64]

      (43) (a) Bullett, D. W. Electronic structure and properties of NbS3 and Nb3S4. J. Solid State Chem. 1980, 33, 13-16.

    65. [65]

      (b) Zhdanov, K. R.; Mishenko, A. V.; Rakhmenkulov, F. S.; Fedorov, V. E. Structural anisotropy and heat capacity of NbS3. Phys. Stat. Sol.

    66. [66]

      (A) 1984, 83, 147-152.

    67. [67]

      (c) Artemkina, S. B.; Podlipskaya, T. Y.; Bulavchenko, A. I.; Komonov, A. I.; Mironov, Y. V.; Fedorov, V. E. Preparation and characterization of colloidal dispersions of layered niobium chalcogenides. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 30-39.

  • 加载中
    1. [1]

      WANG BinLI Qian-QianWANG Jian-FuHUANG XinZHANG Yong-Fan . Electronic Structures and Chemical Bonding of NbS6-/0 Clusters. Chinese Journal of Structural Chemistry, 2016, 35(2): 175-184. doi: 10.14102/j.cnki.0254-5861.2011-0894

    2. [2]

      MUHAMMAD Nadeem ArshadTARIQ MahmoodATHER Faroque KhanMUHAMMAD Zia-Ur-RehmanABDULLAH M. AsiriISLAM Ullah Khan KHURSHID AyubAZAM MukhtarMUHAMMAD Tariq Saeed . Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study. Chinese Journal of Structural Chemistry, 2015, 34(1): 15-25. doi: 10.14102/j.cnki.0254-5861.2011-0423

    3. [3]

      Yu Mei XING Zheng Yu ZHOU Ben Ni DU . DFT Calculations for Electron Transfer Bond-breaking Reaction of CH3-X. Chinese Chemical Letters, 2001, 12(4): 347-350.

    4. [4]

      YU MinMENG Yao-Yong . Size Effect on the Raman Spectra and Electronic Structure of the Glycine-alanine Oligopeptide Chains. Chinese Journal of Structural Chemistry, 2016, 35(8): 1289-1296. doi: 10.14102/j.cnki.0254-5861.2011-1065

    5. [5]

      LIU Shubin.ZHANG Xiaojuan. . Chemical Concepts from Density Functional Theory. Acta Physico-Chimica Sinica, 2018, 34(6): 563-566. doi: 10.3866/PKU.WHXB201802282

    6. [6]

      Hang LiXiao-Qing ZhongYong-Lie SunCheng-Yuan HuangQi-Hui Wu . Density functional theory calculations of lithium alloying with Ge10H16 atomic cluster. Chinese Chemical Letters, 2016, 27(03): 437-440. doi: 10.1016/j.cclet.2015.11.016

    7. [7]

      FAN YiFENG Yu-QiDA Shi-LuSHI Zhi-GuoXU Li . Characterization of Mesoporous Silicas with Chemically Bonded β-Cyclodextrin and Their Adsorption Performance. Chinese Journal of Applied Chemistry, 2004, 21(9): 878-883.

    8. [8]

      Chen XinYan HuijunXia Dingguo . Germanium Nanotube as the Catalyst for Oxygen Reduction Reaction: Performance and Mechanism. Acta Chimica Sinica, 2017, 75(2): 189-192. doi: 10.6023/A16080451

    9. [9]

      Wang KaixuanWang Lanzhi . Unexpected Rearrangement Reaction and Synthesis of Benzoxazoles. Chinese Journal of Organic Chemistry, 2019, 39(4): 1147-1152. doi: 10.6023/cjoc201809038

    10. [10]

      Sun YueweiZhou LaiyunWang Lanzhi . A Domino Reaction for the Selective Synthesis of Functionalized Benzo[b] [1, 4]diazepines. Chinese Journal of Organic Chemistry, 2019, 39(12): 3516-3523. doi: 10.6023/cjoc201904026

    11. [11]

      Yue-hui LIXian-chun LIFan-rui MENGQing WANGHuan-ran WANGYu-jie GE . Density functional theory study on the conversion path of leucine by non-thermal plasma. Journal of Fuel Chemistry and Technology, 2021, 49(2): 247-256. doi: 10.19906/j.cnki.JFCT.2021038

    12. [12]

      Ting Wei MU Yong FENG Lei LIU Qing Xiang GUO . On the Structure of the Arginine-carboxylate Salt Bridge:A Density Functional Theory Study. Chinese Chemical Letters, 2001, 12(3): 219-222.

    13. [13]

      Lei LIU Xiao Song LI Qing Xiang GUO You Cheng LIU . Hartree-Fock and Density Functional Theory Studies on the Molecular Recognition of the Cyclodextrin. Chinese Chemical Letters, 1999, 10(12): 1053-1056.

    14. [14]

      FENG Chang-JunYANG Wei-Hua . Linear QSAR Regression Models for the Prediction of Bioconcentration Factors of Chloroanilines in Fish by Density Functional Theory. Chinese Journal of Structural Chemistry, 2014, 33(6): 830-834.

    15. [15]

      HAN Yan-XiaKONG ChaoHOU Li-JieWU Bo-WanCHEN Dong-PingGAO Li-Guo . Theoretical Research on the Multi-channel Reaction Mechanism of CHF Radical with HNCO by Density Functional Theory. Chinese Journal of Structural Chemistry, 2015, 34(8): 1151-1160. doi: 10.14102/j.cnki.0254-5861.2011-0657

    16. [16]

      HUANG PanSHI Xiao-QiFENG Xiao-NingLIU Jian-ZhiLI YiZHANG Yong-Fan . Adsorption of HCN on Ni/Pt(111) Bimetallic Surfaces Investigated with Density Functional Theory Method. Chinese Journal of Structural Chemistry, 2016, 35(10): 1491-1500. doi: 10.14102/j.cnki.0254-5861.2011-1175

    17. [17]

      Li LiBei-Bei YangYi-Kang Si . Chiroptical properties of artemisinin and artemether investigated using time-dependent density functional theory. Chinese Chemical Letters, 2014, 25(12): 1586-1590. doi: 10.1016/j.cclet.2014.07.008

    18. [18]

      YU Donghai.RONG Chunying.LU Tian.DE PROFT Frank.LIU Shubin. . Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory. Acta Physico-Chimica Sinica, 2018, 34(6): 639-649. doi: 10.3866/PKU.WHXB201710231

    19. [19]

      GEERLINGS PaulDE PROFT FrankFIAS Stijn . Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions. Acta Physico-Chimica Sinica, 2018, 34(6): 699-707. doi: 10.3866/PKU.WHXB201711221

    20. [20]

      LIU Shubin . An Alternative Approach to Extend Levy Constrained Search in Fock Space to No Integer Electron Number in Density Functional Theory. Acta Physico-Chimica Sinica, 2018, 34(6): 561-562. doi: 10.3866/PKU.WHXB201712182

Metrics
  • PDF Downloads(1)
  • Abstract views(1503)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return