

Two Near-infrared Emissive Lanthanide-based Metal-organic Complexes Constructed from Efficient Energy Transfer Ligand①
English
Two Near-infrared Emissive Lanthanide-based Metal-organic Complexes Constructed from Efficient Energy Transfer Ligand①
-
Key words:
- synthesis
- / crystal structure
- / near-infrared material
- / lanthanide-based complexes
-
1 INTRODUCTION
Lanthanide metal-organic coordinated polymers or MOFs are considered as one of the promising materials for unique applications in optical, magnetic, sorption and catalytic fields[1 -4 ]. Especially, near-infrared (NIR) emissive materials have aroused great interest because of their enormous potential use in many fields such as biological sciences, infrared detection and laser system[5 -7 ]. By incorporating NIR-emitting nanoscale Ln-MOFs into the living cells, biological imaging for NIR can be realized[8 ]. Yb, Nd, Pr and Er containing meatal-organic complexes are one of the most widely studied approaches to this kind of materials. However, owing to the forbidden f-f transitions of Ln (III) ions, the absorption coefficient is rather low. In general, π-conjugated organic chromophores are used to sensitize and transfer energy to the Ln (III) centers. To obtain highly efficient NIR emission materials, ligands used in the construction of lanthanide complexes should serve not only as connectors and but also as sensitizers and the enhancement of the NIR emission of Ln3+ would be expected. For example, it has recently been reported that by using a π-conjugated carboxylate ligand 4, 4′-biphenyl-dicarboxylic acid (H2bpdc), Jia and co-workers are able to develop a series of NIR Ln-MOFs LnCl (bpdc)(DMF)] (Ln =La, Ce, Pr, Nd and Sm)[9 ]. To meet the requirements of highly efficient luminescent material, we choose two kinds of polycarboxylic acids 2, 6-H2pydcOH and 1, 3-H2BDC, which are capable to efficiently transfer energy to lanthanide ions to construct new lanthanide carboxylate coordination complexes. Both of them meet the requirement of efficient energy transfer for the ISC process (inter-system crossing)[10 ]. Compounds 1 and 2 were synthesized solvothermally and they exhibit relative strong NIR emission.
2 EXPERIMENTAL
2.1 Materials and instruments
All the chemicals were purchased commercially and used as received. Thermogravimetric experiments and mass spectra were performed using Thermal Analysis-Quadrupole TGA/NETZSCH STA449C instrument heated from 25 to 1000 ℃ (heating rate of 10 ℃/min, nitrogen stream). The powder X-ray diffraction (XRD) patterns were recorded on crushed single crystals in the 2θ range of 5~50º using Cu-Kα radiation. The XRD was measured on a MiniFlex II X-Ray Diffractometer. IR spectra using the KBr pellet technique were recorded on a VERTEX70 spectrophotometer. Elemental analyses were measured with an Elemental Vairo Micro Analyzer. Fluorescence spectra for the solid samples were performed on an Edinburgh Analytical instrument FLS920. Quantitative data were measured in the solid state at 298±2 K with excitation and emission slit widths of 2/1.3 nm, and the emission was monitored from 400 to 1600 nm.
2.2 Synthesis
A mixture containing Nd (NO3)3·6H2O (134 mg, 0.30 mmol), 2, 6-H2pydcOH (109 mg, 0.60 mmol) and 1, 10-phenanthrolion (120 mg, 0.90 mmol) was placed in a 23 mL Teflon-lined stainless-steel reactor with 8 mL of deionized water. The mixture was heated to 150° C in 4 h and kept to this temperature for three days. The reaction system was cooled slowly to room temperature during another two days. Brown block crystals of 1 were collected in 60% yield based on Nd (NO3)3·6H2O, washed thoroughly with methanol, and dried in air at room temperature. Elemental analysis calcd. (%) for 1 C90H58N14Nd4O36 (2488.4): C, 43.40; H, 2.33; N, 7.88. Found (%): C, 44.06; H, 2.35; N, 7.83. IR (KBr, cm-1): 3390 m, 3073 w, 2721 w, 2492 w, 1949 vw, 1649 m, 1615 s, 1590 s, 1571 vs, 1427 vs, 1383 m, 1336 m, 1256 m, 1119 m, 1021 s, 943 m, 841 m, 810 m, 726 m, 637m.
Compound 2 was synthesized in a similar procedure as described for 1. A mixture of Yb (NO3)3·6H2O (135 mg, 0.35 mmol) and m-H2BDC (99 mg, 0.60 mmol) and 1, 10-phenanthrolion (120 mg, 0.67 mmol) was placed in a Teflon-lined stainless steel vessel (22 mL) with 8 mL of mixed-solvent of DMF (N, N′-dimethylformamide) and methanol (V/V = 1:1), which was heated at 130℃ for three days, and then cooled to room temperature in another two days. Colorless block crystals of 2 were collected in 55% yield based on Yb (NO3)3·6H2O, washed thoroughly with methanol, and dried in air at room temperature. Elemental analysis calcd. (%) for 2 C24H14N2O6Yb (1229.76): C, 49.76; H, 2.34; N, 4.67. Found (%): C, 49.36; H, 2.83; N, 5.84. IR (KBr, cm-1): 3427 w, 3059 m, 2936 w, 2871 vw, 1944 vw, 1673 s, 1622 vs, 1540 s, 1480 s, 1402 vs, 1104 m, 918 m, 848 s, 754 vs, 954 m, 757 s, 730 vs, 712 vs, 641 m, 576 w.
2.3 Structure determination
Single-crystal X-ray diffraction data were collected on a Rigaku diffractometer with a Saturn 724 CCD area detector (MoKα, λ = 0.71073Å) at room temperature. The structures were solved by direct methods and refined by full-matrix least-squares on F2 using SHELXS-97 and SHELXL-97 programs, respectively. Metal atoms in each compound were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. All non-hydrogen atoms were refined anisotropically. The organic hydrogen atoms were positioned geometrically, while those of water molecules were located using the difference Fourier method and refined freely. Crystallographic data and other pertinent information are summarized in Table 1. The selected bond lengths and bond angles are listed in Tables 2 and 3. The topological analyses for these compounds were studied using TOPOS 4.0[11 ].
Compound 1 2 Formula C90H58Nd4N14O36 C24H14YbO6 Formula mass 2488.38 599.41 Crystal system Triclinic Monoclinic Space group P1- C2/c a (Å) 12.2439(19) 19.279(3) b (Å) 13.318(2) 10.4970(12) c (Å) 15.252(3) 23.688(3) α (º) 113.560 90.00 β (º) 93.154(8) 102.654(2) γ (º) 102.031(6) 90.00 V (Å3) 2203.0(6) 4677.5(10) Z 1 8 μ (mm-1) 2.42 4.04 Dc (g/cm3) 1.868 1.072 Ra (I > 2σ(I)) 0.034 0.043 wRb (I > 2σ(I)) 0.131 0.166 GOOF on F2 1.15 1.11 aR = Σ||Fo|-|Fc||/Σ|Fo|, bwR = [Σw(Fo2 − Fc2)2/Σw(Fo2)2]0.5 Table 1. Crystallographic Data for 1 and 2Bond Dist. Bond Dist. Bond Dist. Nd(1)−N(7a) 2.58(3) Nd(2)−C(1) 2.94(4) C(10)−C(8) 1.38(5) Nd(1)−O(11) 2.59(3) O(18)−C(25) 1.28(5) N(4)−C(38) 1.33(6) Nd(1)−N(5) 2.59(3) O(12)−C(6) 1.28(6) N(4)−C(21) 1.37(6) Nd(1)−N(1) 2.67(4) O(11)−C(1) 1.27(5) O(31)−C(6) 1.23(6) Nd(1)−N(2) 2.69(3) O(10)−C(5) 1.27(5) C(8)−C(4) 1.40(6) Nd(2)−O(12) 2.40(3) O(10)−Nd(1a) 2.43(3) C(7)−N(7) 1.34(5) Nd(2)−O(8) 2.43(3) O(9)−C(1) 1.25(5) C(5)−C(28) 1.52(5) Nd(2)−O(9) 2.47(3) O(8)−C(2) 1.25(5) C(4)−O(29) 1.33(5) Nd(2)−(O)5 2.53(3) O(7)−C(2) 1.26(5) N(3)−C(36) 1.33(7) Nd(2)−O(21) 2.54(4) O(7)−Nd(1a) 2.52(3) N(3)−C(49) 1.35(6) Nd(2)−N(6) 2.54(3) O(6)−C(3) 1.27(5) N(7)−C(28) 1.33(5) Nd(2)−N(4) 2.67(4) O(6)−Nd(1a) 2.45(3) N(7)−Nd(1a) 2.58(3) Nd(2)−N(3) 2.69(4) O(5)−C(3) 1.26(5) O(30)−C(24) 1.33(5) Nd(2)−O(11) 2.73(3) N(6)−C(11) 1.33(5) C(28)−C(27) 1.39(5) Angle (°) Angle (°) Angle (°) O(10)a−Nd(1)−(O6)a 93.3(11) O(7)a−Nd(1)−O(11) 83.5(9) O(11)−C(1)−Nd(2) 68(2) O(10)a−Nd(1)−O(18) 78.8(10) O(9)−C(1)−Nd(2) 56(2) C(10)−C(1)−Nd(2) 171(3) (O6)a−Nd(1)−O(18) 144.2(10) N(7)a−Nd(1)−O(11) 143.3(10) C(10)−N(5)−C(12) 116(3) O(10)a−Nd(1)−O(7)a 124.8(10) O(10)a−Nd(1)−N(5) 136.0(11) C(10)−N(5)−Nd(1) 123(2) (O6)a−Nd(1)−O(7)a 74.1(10) (O6)a−Nd(1)−N(5) 130.1(11) C(12)−N(5)−Nd(1) 121(2) O(18)−Nd(1)−O(7)a 82.0(10) O(18)−Nd(1)−N(5) 61.9(10) N(6)−C(15)−C(26) 123(4) O(10)a−Nd(1)−N(7)a 62.0(10) O(7)a−Nd(1)−N(5) 70.8(10) N(6)−C(15)−C(3) 113(3) (O6)a−Nd(1)−N(7)a 77.1(10) N(7)a−Nd(1)−N(5) 114.8(10) C(26)−C(15)−C(3) 124(4) O(18)−Nd(1)−N(7)a 68.4(10) O(11)−Nd(1)−N(5) 61.9(9) C(7)−C(14)−C(24) 118(4) O(7)a−Nd(1)−N(7)a 62.8(10) O(10)a−Nd(1)−N(1) 76.2(11) C(12)−C(13)−C(4) 119(4) O(10)a−Nd(1)−O(11) 148.1(10) O(6)a−Nd(1)−N(1) 133.7(11) C(13)−C(12)−C(25) 122(4) (O6)a−Nd(1)−O(11) 80.1(10) O(18)−Nd(1)−N(1) 78.6(11) N(5)−C(12)−C(13) 124(4) O(18)−Nd(1)−O(11) 123.7(9) O(7)a−Nd(1)−N(1) 147.8(11) N(5)−C(12)−C(25) 114(3) Symmetry code: (a) -x+1, -y+1, -z Table 2. Selected Bond Length s (Å) and Bond Angles (°) for 1Bond Dist. Bond Dist. Bond Dist. Nd(1)−N(7a) 2.58(3) Nd(2)−C(1) 2.94(4) C(10)−C(8) 1.38(5) Nd(1)−O(11) 2.59(3) O(18)−C(25) 1.28(5) N(4)−C(38) 1.33(6) Nd(1)−N(5) 2.59(3) O(12)−C(6) 1.28(6) N(4)−C(21) 1.37(6) Nd(1)−N(1) 2.67(4) O(11)−C(1) 1.27(5) O(31)−C(6) 1.23(6) Nd(1)−N(2) 2.69(3) O(10)−C(5) 1.27(5) C(8)−C(4) 1.40(6) Nd(2)−O(12) 2.40(3) O(10)−Nd(1a) 2.43(3) C(7)−N(7) 1.34(5) Nd(2)−O(8) 2.43(3) O(9)−C(1) 1.25(5) C(5)−C(28) 1.52(5) Nd(2)−O(9) 2.47(3) O(8)−C(2) 1.25(5) C(4)−O(29) 1.33(5) Nd(2)−(O)5 2.53(3) O(7)−C(2) 1.26(5) N(3)−C(36) 1.33(7) Nd(2)−O(21) 2.54(4) O(7)−Nd(1a) 2.52(3) N(3)−C(49) 1.35(6) Nd(2)−N(6) 2.54(3) O(6)−C(3) 1.27(5) N(7)−C(28) 1.33(5) Nd(2)−N(4) 2.67(4) O(6)−Nd(1a) 2.45(3) N(7)−Nd(1a) 2.58(3) Nd(2)−N(3) 2.69(4) O(5)−C(3) 1.26(5) O(30)−C(24) 1.33(5) Nd(2)−O(11) 2.73(3) N(6)−C(11) 1.33(5) C(28)−C(27) 1.39(5) Angle (°) Angle (°) Angle (°) O(10)a−Nd(1)−(O6)a 93.3(11) O(7)a−Nd(1)−O(11) 83.5(9) O(11)−C(1)−Nd(2) 68(2) O(10)a−Nd(1)−O(18) 78.8(10) O(9)−C(1)−Nd(2) 56(2) C(10)−C(1)−Nd(2) 171(3) (O6)a−Nd(1)−O(18) 144.2(10) N(7)a−Nd(1)−O(11) 143.3(10) C(10)−N(5)−C(12) 116(3) O(10)a−Nd(1)−O(7)a 124.8(10) O(10)a−Nd(1)−N(5) 136.0(11) C(10)−N(5)−Nd(1) 123(2) (O6)a−Nd(1)−O(7)a 74.1(10) (O6)a−Nd(1)−N(5) 130.1(11) C(12)−N(5)−Nd(1) 121(2) O(18)−Nd(1)−O(7)a 82.0(10) O(18)−Nd(1)−N(5) 61.9(10) N(6)−C(15)−C(26) 123(4) O(10)a−Nd(1)−N(7)a 62.0(10) O(7)a−Nd(1)−N(5) 70.8(10) N(6)−C(15)−C(3) 113(3) (O6)a−Nd(1)−N(7)a 77.1(10) N(7)a−Nd(1)−N(5) 114.8(10) C(26)−C(15)−C(3) 124(4) O(18)−Nd(1)−N(7)a 68.4(10) O(11)−Nd(1)−N(5) 61.9(9) C(7)−C(14)−C(24) 118(4) O(7)a−Nd(1)−N(7)a 62.8(10) O(10)a−Nd(1)−N(1) 76.2(11) C(12)−C(13)−C(4) 119(4) O(10)a−Nd(1)−O(11) 148.1(10) O(6)a−Nd(1)−N(1) 133.7(11) C(13)−C(12)−C(25) 122(4) (O6)a−Nd(1)−O(11) 80.1(10) O(18)−Nd(1)−N(1) 78.6(11) N(5)−C(12)−C(13) 124(4) O(18)−Nd(1)−O(11) 123.7(9) O(7)a−Nd(1)−N(1) 147.8(11) N(5)−C(12)−C(25) 114(3) Symmetry codes: (a) −x+1/2, -y+3/2, -z; (b) x−1/2, y−1/2, z; (c) x+1/2, y+1/2, z; (d) -x, y, -z+1/2 Table 3. Selected Bond Length s (Å) and Bond Angles (°) for 23 RESULTS AND DISCUSSION
3.1 Structure description
Complex 1 crystallizes in the triclinic P1- space group and four Nd (III) ions are connected into a zero dimensional cluster. The asymmetric unit of 1 consists of two crystallographically independent Nd (III) ions, three 2, 6-pydcOH2- anions, two coordinated phen molecules, one coordinated water molecules and two lattice water molecules. Each Nd (III) ion is nine-coordinated in a distorted tricapped trigonal prismatic geometry with a little difference between two kinds of Nd (III) ions: Nd (1) atom is coordinated by five oxygen atoms and three nitrogen atoms from three 2, 6-pydcOH2- anions and two nitrogen atoms from one chelating phen ligand, while Nd (2) is coordinated by five carboxylate oxygen atoms, one oxygen atom from a coordinated water molecule, one nitrogen from a 2, 6-pydcOH2- anion and two nitrogen atoms from a phen ligand. The Nd-O and Nd-N bond lengths range from 2.40(3) to 2.73(3) Å and 2.54(3) to 2.69(3) Å, respectively which together with the O-Nd-O and O-Nd-N bond angles fall into the normal range reported for the Nd complexes. The unit cell is constructed by two of these asymmetric units and the structure is constituted by stacking unit cells (Fig. 1). Such tetranuclear structures are extended to 1D chains which further form a 3D supramolecular network through large amount of intermolecular π…π interactions and weak hydrogen bonds[12 ].
Compound 2 crystallizes in C2/c space group and the asymmetry unit consists of one crystallographically independent Yb (III) center, one and a half m-BDC2- anions and one phen unit. The Yb (III) center is eight-coordinated by six oxygen atoms from four m-BDC2- ligands and two nitrogen atoms from the chelating phen ligand (Fig. 2). Each Yb (III) ion links the symmetry-related atoms to form a dinuclear [Yb2(COO)6] SBU with two bridging and four chelating carboxylate groups. The two Yb (III) ions in each dinuclear unit are connected by six m-BDC2- groups and there are two kinds of linkers: the first kind is connected to two other SBUs in pair and the second kind is connected to two other SBUs solely. As the result, the whole [Yb2(COO)6] unit can be viewed as a four-connected SBU. The m-BDC2- linker adopts two kinds of coordination modes: (k2)-(k1-k1)-μ3 and (k2-k2)-μ2. These two kinds of linkers connect SBUs to form a 3D network. The dinuclear lanthanide SBU can be viewed as a four-connected node while the m-BDC2- ligands can be viewed as a linear connector. After calculation using program Topsin 4.0, a typical cds topological 3D net was obtained. There are few metal-organic coordinated polymers constructed from lanthanide, m-H2BDC and phen and none of them adopt a cds topology (Fig. 3d)[13 -16 ].
Figure 3. Schematic representation of 2 for the polyhedral view of Yb (III) organized into a 3D cds topological structure. a) Schematic of dinuclear SBU. b) Two coordination modes of the m-BDC2- anions. c) Ligands connect the clusters into a 3D framework structure. d) 3D framework simplified into cds topological net (DMF molecules and chelating phen are omitted for clarity)
3.2 Spectral and thermal analyses
The experimental and simulated powder X-ray diffraction patterns of 1 and 2 are given in Fig. 4c and 4d. For each compound, the experimental pattern matches very well with the simulated one, which indicates that the as-synthesized samples are pure. IR spectra of 1 and 2 are given in Fig. 4a. The characteristic absorption bands of carboxylate groups are shown in the 1480~1750 cm-1 range for asymmetric stretching vibration νas (COO-) and 1250~1450 cm-1 for symmetric stretching vibration νs (COO-)[17 ]. Strong absorption bands in the range of 1710~1675 cm-1 in the IR spectra indicate the incomplete deprotonation of carboxyl groups. Strong water absorption bands in the spectrum of 1 show the existence of unbound and coordinated water in the zero dimension structure. Moister in the sample may account for the water bands in the spectrum of 2. The TGA curves (Fig. 4b) suggest that 1 is stable below 380℃, while 2 does not collapse unstill the temperature reaches 500℃, presumably because the 3D net structure of 2 is more stable than the hydrogen bond supported structure of 1. The weight loss of 6.3% around 200℃ in the curve of 1 may be attributed to the release of coordinated and unbound water molecules (calcd.: 4.35%). The measured weigh loss for the water molecules is much bigger than the theoretical value due to the existence of moisture and unreacted organic raw chemicals in the sample.
3.3 Luminescent properties
Lanthanide ions are characterized by a gradual filling of the 4f orbitals, from 4f0 to 4f14 and except for La (III) and Lu (III), each lanthanide ion has its specific emission bands. For example, the lanthanide ion Eu (III) emits red light; Tb (III) green light; and Nd (III), Yb (III), and Er (III) near-infrared light. Ln-MOFs with NIR emission is rare despite that a large number of visible light-emitting photoluminescent Ln-MOFs have been reported. This accounts for the forbidden f-f transitions, making the direct excitation of the metals very inefficient unless high power laser excitation is utilized. This problem can be overcome by coupling species that can participate in energy transfer processes, known as luminescence sensitization or antenna effect[18 -20 ].
After the investigation of luminescent properties, we found that the titled compounds 1 and 2 turned out to be efficient NIR luminescent materials. The solid state UV-vis excitation and NIR emission spectra were measured to determine how the structure and ligand facilitate the luminescent properties of the system (Fig. 5a and 5b). The excitation spectrum of 1 exhibits a broad band range from 250 to 360 nm centered at about 320 nm. Upon excitation at 320 nm, complex 1 displays three strong emission bands in the NIR region, deriving from the typical f-f transitions of Nd (III) ion at 902 (4F3/2 → 4I9/2), 1057 (4F3/2 → 4I11/2), and 1331 nm (4F3/2 → 4I13/2) (Fig. 5a) respectively[21 ]. The peaks at 1057 and 1331 nm are very useful in laser system and telecommunication application[22, 23 ]. Compound 2 shows excitation spectrum band ranges from 300 to 400 nm centered at about 350 nm without strong line peaks because of the f-f transitions of Yb (III) ions. Upon Excitation at 350 nm, compound 2 shows characteristic NIR emission of Yb (III) ions: strong emission band around 1012 nm is detected and this can be assigned to the 2F5/2 → 2F7/2 transition. The excellent NIR emission properties of these two compounds may be attributed to the efficient energy transfer character of the ligands[24, 25 ]. This work provides an effective way to construct high efficient Ln-based NIR emissive materials.
-
-
[1]
Allendorf M. D., Bauer C. A., Bhakta R. K., Houk R. J. T.. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1330-1352. doi: 10.1039/b802352m
-
[2]
Cui Y. J., Yue Y. F., Qian G. D., Chen B. L.. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012, 112: 1126-62. doi: 10.1021/cr200101d
-
[3]
Corma A., García H., Llabrés i Xamena F. X.. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem. Rev., 2010, 110: 4606-4655. doi: 10.1021/cr9003924
-
[4]
Jiang H. L., Xu Q.. Porous metal-organic frameworks as platforms for functional applications[J]. Chem. Commun., 2011, 47: 3351-3370. doi: 10.1039/c0cc05419d
-
[5]
Auzel F.. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chem. Rev., 2004, 104: 139-173. doi: 10.1021/cr020357g
-
[6]
Lazarides T., Alamiry M. A. H., Adams H., Pope S. J. A., Faulkner S., Weinstein J. A., Ward M. D.. Anthracene as a sensitiser for near-infrared luminescence in complexes of Nd(III), Er(III) and Yb(III): an unexpected sensitisation mechanism based on electron transfer[J]. Dalton Trans., 2007, : 1484-1491.
-
[7]
Wong W. K., Yang X. P., Jones R. A., Rivers J. H., Lynch V., Lo W. K., Xiao D., Oye M. M., Holmes A. L.. Multinuclear luminescent Schiff-base Zn-Nd sandwich complexes[J]. Inorg. Chem., 2006, 45: 4340-4345. doi: 10.1021/ic051866e
-
[8]
Foucault-Collet A., Gogick K. A., White K. A., Villette S., Pallier A., Collet G., Kieda C., Li T., Geib S. J., Rosi N. L., Petoud S.. Lanthanide near infrared imaging in living cells with Yb(III) nano metal organic frameworks[J]. PNAS, 2013, 110: 17199-17204. doi: 10.1073/pnas.1305910110
-
[9]
Jia L. N., Hou L., Wei L., Jing X. J., Liu B., Wang Y. Y., Shi Q. Z.. Five sra topological Ln(III)-MOFs based on novel metal-carboxylate/CI chain: structure, near-infrared luminescence and magnetic properties[J]. Cryst. Growth Des., 2013, 13: 1570-1576. doi: 10.1021/cg301810y
-
[10]
Weng Z. H., Liu D. C., Chen Z. L., Zou H. H., Qin S. N., Liang F. P.. Two types of lanthanide coordination polymers of (2, 3-f)-pyrazino(1, 10)phenanthroline-2, 3-dicarboxylic acid: syntheses, structures, and properties[J]. Cryst. Growth Des., 2009, 9: 4163-4170. doi: 10.1021/cg900400t
-
[11]
Pramanik S., Zheng C., Zhang X., Emge T. J., Li J.. New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds[J]. J. Am. Chem. Soc., 2011, 133: 4153-4155. doi: 10.1021/ja106851d
-
[12]
Zhang H., Shan X., Zhou L., Lin P., Li R., Ma E., Guo X., Du S.. Full-colour fluorescent materials based on mixed-lanthanide(III) metal-organic complexes with high-efficiency white light emission[J]. J. Mater. Chem. C, 2013, 1: 888-891. doi: 10.1039/C2TC00414C
-
[13]
Zhang H. B., Peng Y., Shan X. C., Tian C. B., Lin P., Du S. W.. Lanthanide metal organic frameworks based on octahedral secondary building units: structural, luminescent, and magnetic properties[J]. Inorn. Chem. Comm., 2011, 14: 1165-1169. doi: 10.1016/j.inoche.2011.04.014
-
[14]
Wan Y. H., Zhang L. P., Jin L. P., Gao S., Lu S. Z.. High-dimensional architectures from the self-assembly of lanthanide ions with benzenedicarboxylates and 1, 10-phenanthroline[J]. Inorg. Chem., 2003, 42: 4985-4994. doi: 10.1021/ic034258c
-
[15]
Wan Y. H., Zhang L. P., Jin L. P.. Three new lanthanide coordination polymers containing isophthalate and 1, 10-phenanthroline[J]. J. Mol. Struct., 2003, 658: 253-260. doi: 10.1016/S0022-2860(03)00498-8
-
[16]
Zhang L. P., Wan Y. H., Jin L. P.. Hydrothermal synthesis and crystal structure of neodymium(III) coordination polymers with isophthalic acid and 1, 10-phenanthroline[J]. Polyhedron, 2003, 22: 981-987. doi: 10.1016/S0277-5387(03)00021-4
-
[17]
Bo Q. B., Wang H. Y., Wang D. Q., Zhang Z. W., Miao J. L., Sun G. X.. Structure and photoluminescence tuning features of Mn2+- and Ln3+-activated Zn-based heterometal organic frameworks (MOFs) with a single 5-methylisophthalic acid ligand[J]. Inorg. Chem., 2011, 50: 10163-10177. doi: 10.1021/ic201124c
-
[18]
Bunzli J. C. G., Piguet C.. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies[J]. Chem. Rev., 2002, 102: 1897-1928. doi: 10.1021/cr010299j
-
[19]
Sabbatini N., Guardigli M., Lehn J. M.. Luminescent lanthanide complexes as photochemical supramolecular devices[J]. Coord. Chem. Rev., 1993, 123: 201-228. doi: 10.1016/0010-8545(93)85056-A
-
[20]
Binnemans K.. Lanthanide-based luminescent hybrid materials[J]. Chem. Rev., 2009, 109: 4283-4374. doi: 10.1021/cr8003983
-
[21]
Li C. J., Peng M. X., Leng J. D., Yang M. M., Lin Z. J., Tong M. L.. Synthesis, structure, photoluminescence and magnetic properties of new 3-D lanthanide-pyridine-2, 4, 6-tricarboxylate frameworks[J]. CrystEngComm., 2008, 10: 1645-1652. doi: 10.1039/b811883n
-
[22]
Bu nzli J. C. G., Pigue C.. Taking advantage of luminescent lanthanide ions[J]. Chem. Soc. Rev., 2005, 34: 1048-1077. doi: 10.1039/b406082m
-
[23]
Jaque D., Enguita O., García Sole J., Jiang A. D., Luo Z. D.. Infrared continuous-wave laser gain in neodymium aluminum borate: a promising candidate for microchip diode-pumped solid state lasers[J]. Appl. Phys. Lett., 2000, 76: 2176-2178. doi: 10.1063/1.126289
-
[24]
Zhang H., Zhou L., Wei J., Li Z., Lin P., Du S.. Highly luminescent and thermostable lanthanide-carboxylate framework materials with helical configurations[J]. J. Mater. Chem., 2012, 22: 21210-21217. doi: 10.1039/c2jm34088g
-
[25]
Bellusci A., Barberio G., Crispini A., Ghedini M., Deda M. L., Pucci D.. Synthesis and luminescent properties of novel lanthanide(III)-diketone complexes with nitrogen p, p?-disubstituted aromatic ligands[J]. Inorg. Chem., 2005, 44: 1818-1825. doi: 10.1021/ic048951r
-
[1]
-
Figure 3 Schematic representation of 2 for the polyhedral view of Yb (III) organized into a 3D cds topological structure. a) Schematic of dinuclear SBU. b) Two coordination modes of the m-BDC2- anions. c) Ligands connect the clusters into a 3D framework structure. d) 3D framework simplified into cds topological net (DMF molecules and chelating phen are omitted for clarity)
Table 1. Crystallographic Data for 1 and 2
Compound 1 2 Formula C90H58Nd4N14O36 C24H14YbO6 Formula mass 2488.38 599.41 Crystal system Triclinic Monoclinic Space group P1- C2/c a (Å) 12.2439(19) 19.279(3) b (Å) 13.318(2) 10.4970(12) c (Å) 15.252(3) 23.688(3) α (º) 113.560 90.00 β (º) 93.154(8) 102.654(2) γ (º) 102.031(6) 90.00 V (Å3) 2203.0(6) 4677.5(10) Z 1 8 μ (mm-1) 2.42 4.04 Dc (g/cm3) 1.868 1.072 Ra (I > 2σ(I)) 0.034 0.043 wRb (I > 2σ(I)) 0.131 0.166 GOOF on F2 1.15 1.11 aR = Σ||Fo|-|Fc||/Σ|Fo|, bwR = [Σw(Fo2 − Fc2)2/Σw(Fo2)2]0.5 Table 2. Selected Bond Length s (Å) and Bond Angles (°) for 1
Bond Dist. Bond Dist. Bond Dist. Nd(1)−N(7a) 2.58(3) Nd(2)−C(1) 2.94(4) C(10)−C(8) 1.38(5) Nd(1)−O(11) 2.59(3) O(18)−C(25) 1.28(5) N(4)−C(38) 1.33(6) Nd(1)−N(5) 2.59(3) O(12)−C(6) 1.28(6) N(4)−C(21) 1.37(6) Nd(1)−N(1) 2.67(4) O(11)−C(1) 1.27(5) O(31)−C(6) 1.23(6) Nd(1)−N(2) 2.69(3) O(10)−C(5) 1.27(5) C(8)−C(4) 1.40(6) Nd(2)−O(12) 2.40(3) O(10)−Nd(1a) 2.43(3) C(7)−N(7) 1.34(5) Nd(2)−O(8) 2.43(3) O(9)−C(1) 1.25(5) C(5)−C(28) 1.52(5) Nd(2)−O(9) 2.47(3) O(8)−C(2) 1.25(5) C(4)−O(29) 1.33(5) Nd(2)−(O)5 2.53(3) O(7)−C(2) 1.26(5) N(3)−C(36) 1.33(7) Nd(2)−O(21) 2.54(4) O(7)−Nd(1a) 2.52(3) N(3)−C(49) 1.35(6) Nd(2)−N(6) 2.54(3) O(6)−C(3) 1.27(5) N(7)−C(28) 1.33(5) Nd(2)−N(4) 2.67(4) O(6)−Nd(1a) 2.45(3) N(7)−Nd(1a) 2.58(3) Nd(2)−N(3) 2.69(4) O(5)−C(3) 1.26(5) O(30)−C(24) 1.33(5) Nd(2)−O(11) 2.73(3) N(6)−C(11) 1.33(5) C(28)−C(27) 1.39(5) Angle (°) Angle (°) Angle (°) O(10)a−Nd(1)−(O6)a 93.3(11) O(7)a−Nd(1)−O(11) 83.5(9) O(11)−C(1)−Nd(2) 68(2) O(10)a−Nd(1)−O(18) 78.8(10) O(9)−C(1)−Nd(2) 56(2) C(10)−C(1)−Nd(2) 171(3) (O6)a−Nd(1)−O(18) 144.2(10) N(7)a−Nd(1)−O(11) 143.3(10) C(10)−N(5)−C(12) 116(3) O(10)a−Nd(1)−O(7)a 124.8(10) O(10)a−Nd(1)−N(5) 136.0(11) C(10)−N(5)−Nd(1) 123(2) (O6)a−Nd(1)−O(7)a 74.1(10) (O6)a−Nd(1)−N(5) 130.1(11) C(12)−N(5)−Nd(1) 121(2) O(18)−Nd(1)−O(7)a 82.0(10) O(18)−Nd(1)−N(5) 61.9(10) N(6)−C(15)−C(26) 123(4) O(10)a−Nd(1)−N(7)a 62.0(10) O(7)a−Nd(1)−N(5) 70.8(10) N(6)−C(15)−C(3) 113(3) (O6)a−Nd(1)−N(7)a 77.1(10) N(7)a−Nd(1)−N(5) 114.8(10) C(26)−C(15)−C(3) 124(4) O(18)−Nd(1)−N(7)a 68.4(10) O(11)−Nd(1)−N(5) 61.9(9) C(7)−C(14)−C(24) 118(4) O(7)a−Nd(1)−N(7)a 62.8(10) O(10)a−Nd(1)−N(1) 76.2(11) C(12)−C(13)−C(4) 119(4) O(10)a−Nd(1)−O(11) 148.1(10) O(6)a−Nd(1)−N(1) 133.7(11) C(13)−C(12)−C(25) 122(4) (O6)a−Nd(1)−O(11) 80.1(10) O(18)−Nd(1)−N(1) 78.6(11) N(5)−C(12)−C(13) 124(4) O(18)−Nd(1)−O(11) 123.7(9) O(7)a−Nd(1)−N(1) 147.8(11) N(5)−C(12)−C(25) 114(3) Symmetry code: (a) -x+1, -y+1, -z Table 3. Selected Bond Length s (Å) and Bond Angles (°) for 2
Bond Dist. Bond Dist. Bond Dist. Nd(1)−N(7a) 2.58(3) Nd(2)−C(1) 2.94(4) C(10)−C(8) 1.38(5) Nd(1)−O(11) 2.59(3) O(18)−C(25) 1.28(5) N(4)−C(38) 1.33(6) Nd(1)−N(5) 2.59(3) O(12)−C(6) 1.28(6) N(4)−C(21) 1.37(6) Nd(1)−N(1) 2.67(4) O(11)−C(1) 1.27(5) O(31)−C(6) 1.23(6) Nd(1)−N(2) 2.69(3) O(10)−C(5) 1.27(5) C(8)−C(4) 1.40(6) Nd(2)−O(12) 2.40(3) O(10)−Nd(1a) 2.43(3) C(7)−N(7) 1.34(5) Nd(2)−O(8) 2.43(3) O(9)−C(1) 1.25(5) C(5)−C(28) 1.52(5) Nd(2)−O(9) 2.47(3) O(8)−C(2) 1.25(5) C(4)−O(29) 1.33(5) Nd(2)−(O)5 2.53(3) O(7)−C(2) 1.26(5) N(3)−C(36) 1.33(7) Nd(2)−O(21) 2.54(4) O(7)−Nd(1a) 2.52(3) N(3)−C(49) 1.35(6) Nd(2)−N(6) 2.54(3) O(6)−C(3) 1.27(5) N(7)−C(28) 1.33(5) Nd(2)−N(4) 2.67(4) O(6)−Nd(1a) 2.45(3) N(7)−Nd(1a) 2.58(3) Nd(2)−N(3) 2.69(4) O(5)−C(3) 1.26(5) O(30)−C(24) 1.33(5) Nd(2)−O(11) 2.73(3) N(6)−C(11) 1.33(5) C(28)−C(27) 1.39(5) Angle (°) Angle (°) Angle (°) O(10)a−Nd(1)−(O6)a 93.3(11) O(7)a−Nd(1)−O(11) 83.5(9) O(11)−C(1)−Nd(2) 68(2) O(10)a−Nd(1)−O(18) 78.8(10) O(9)−C(1)−Nd(2) 56(2) C(10)−C(1)−Nd(2) 171(3) (O6)a−Nd(1)−O(18) 144.2(10) N(7)a−Nd(1)−O(11) 143.3(10) C(10)−N(5)−C(12) 116(3) O(10)a−Nd(1)−O(7)a 124.8(10) O(10)a−Nd(1)−N(5) 136.0(11) C(10)−N(5)−Nd(1) 123(2) (O6)a−Nd(1)−O(7)a 74.1(10) (O6)a−Nd(1)−N(5) 130.1(11) C(12)−N(5)−Nd(1) 121(2) O(18)−Nd(1)−O(7)a 82.0(10) O(18)−Nd(1)−N(5) 61.9(10) N(6)−C(15)−C(26) 123(4) O(10)a−Nd(1)−N(7)a 62.0(10) O(7)a−Nd(1)−N(5) 70.8(10) N(6)−C(15)−C(3) 113(3) (O6)a−Nd(1)−N(7)a 77.1(10) N(7)a−Nd(1)−N(5) 114.8(10) C(26)−C(15)−C(3) 124(4) O(18)−Nd(1)−N(7)a 68.4(10) O(11)−Nd(1)−N(5) 61.9(9) C(7)−C(14)−C(24) 118(4) O(7)a−Nd(1)−N(7)a 62.8(10) O(10)a−Nd(1)−N(1) 76.2(11) C(12)−C(13)−C(4) 119(4) O(10)a−Nd(1)−O(11) 148.1(10) O(6)a−Nd(1)−N(1) 133.7(11) C(13)−C(12)−C(25) 122(4) (O6)a−Nd(1)−O(11) 80.1(10) O(18)−Nd(1)−N(1) 78.6(11) N(5)−C(12)−C(13) 124(4) O(18)−Nd(1)−O(11) 123.7(9) O(7)a−Nd(1)−N(1) 147.8(11) N(5)−C(12)−C(25) 114(3) Symmetry codes: (a) −x+1/2, -y+3/2, -z; (b) x−1/2, y−1/2, z; (c) x+1/2, y+1/2, z; (d) -x, y, -z+1/2 -

计量
- PDF下载量: 10
- 文章访问数: 1976
- HTML全文浏览量: 105