Citation:
MA Yu-Heng, GE Shu-Wang, SHEN Ya, SUN Bai-Wang. Novel Perchlorate and Sulphate Salts of 2-Aminonicotinic Acid: Synthesis, Characterization, Thermal Studies and Hirshfeld Surface Analysis[J]. Chinese Journal of Structural Chemistry,
;2016, 35(1): 7-15.
doi:
10.14102/j.cnki.0254-5861.2011-0684
-
Since 2-aminonicotinic acid is a zwitterionic molecule, the salt or co-crystal strategy was used for the precipitation under identical conditions and obtained two novel salts: salt 1 with 2:1:2 stoichiometry of 2-aminonicotinic acid:perchloric acid: H2O and salt 2 with 2:1:3 stoichiometry of 2-aminonicotinic acid: sulfuric acid: H2O. Their crystal structures were characterized by single-crystal X-ray diffraction, differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA). The structure determination shows that two salts are both primarily stabilized by the strong N-H…O hydrogen bonding interaction between 2-aminonicotinic acid and its corresponding acids. Constituents of the salt-crystalline phase were also investigated in terms of Hirshfeld surfaces. In the crystal lattice, a three-dimensional hydrogen-bonded network is observed, including the formation of a two-dimensional molecular scaffolding motif. Hirshfeld surfaces and fingerprint plots of two salts show that the structures are stabilized by H…H, O-H…O and C-O…π intermolecular interactions.
-
Keywords:
- 2-aminonicotinic acid,
- salt,
- X-ray diffraction,
- Hirshfeld surfaces
-
-
-
[1]
(1) Meyer, M. D.; Altenbach, R. J.; Bai, H.; Basha, F. Z.; Carroll, W. A.; Kerwin, J. F.; Lebold, S. A.; Lee, E.; Pratt, J. K.; Sippy, K. B.; Tietje, K.; Wendt, M. D.; Brune, M. E.; Buckner, S. A.; Hancock, A. A.; Drizin, I. Structure-activity studies for a novel series of bicyclic substituted hexahydrobenz[e]isoindole α1A adrenoceptor antagonists as potential agents for the symptomatic treatment of benign prostatic hyperplasia. J. Med. Chem. 2001, 44, 1971-1985.
-
[2]
(2) Congiu, C.; Cocco, M. T.; Lilliu, V.; Onnis, V. New potential anticancer agents based on the anthranilic acid scaffold. Synthesis and evaluation of biological activity. J. Med. Chem. 2005, 48, 8245-8252.
-
[3]
(3) Charles, D. H.; Victor, G. B. Hydroxamic acids and N-hydroxyimides related to pyridine, pyrazine, and quinoxaline. J. Org. Chem. 1970, 35, 1471-1475.
-
[4]
(4) Becker, D. P.; Flynn, D. L.; Moormann, A. E.; Nosal, R.; Villamil, C. I.; Loeffler, R.; Gullikson, G. W.; Moummi, C.; Yang, D. C. Pyrrolizidine esters and amides as 5-HT4 receptor agonists and antagonists. J. Med. Chem. 2006, 49, 1125-1139.
-
[5]
(5) Zografos, A. L.; Mitsos, C. A.; Markopoulou, O. L. Chemoselective cyclization of aminonicotinic acid derivatives to 1,8-naphthyridin-2-ones via a potential intramolecular azadiene-Ketene electrocyclization reaction. J. Org. Chem. 2001, 66, 4413-4415
-
[6]
(6) Huang, H. H.; Wilkes, G. L.; Orler, B. Ceramers-hybrid materials incorporating polymeric oligomeric species into inorganic glasses utilizing a sol-gel approac. Polym. Prepr. 1985, 14, 557-564.
-
[7]
(7) Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. 1995, 107, 2541-2558.
-
[8]
(8) Berrah, F.; Bouacida, S.; Anana, H.; Roisnel, T. 2-Amino-3-carboxypyridinium perchlorate. Acta Crystallogr. E 2012, E68, o1601-1602.
-
[9]
(9) Berrah, F.; Ouakkaf, A.; Bouacida, S.; Roisnel, T. Bis(2-amino-3-carboxypyridinium) sulfatetrihydrate. Acta Crystallogr. E 2011, E67, o953-o954.
-
[10]
(10) Berrah, F.; Roisnel, T.; Bouacida, S. 2-Amino-3-carboxypyridinium nitrat. Acta Crystallogr. E 2011, E67, o2057-2058.
-
[11]
(11) Bouchene, R.; Bouacida, S.; Berrah, F.; Daran, J. C. 2-Amino-3-carboxypyridinium chloride hemihydrate. Acta Crystallogr. E 2012, E68, o1493-1494.
-
[12]
(12) Aaltonen, J.; Alleso, M.; Mirza, S.; Koradia, K.; Gordon, K. C.; Rantanen, J. Solid form screening - a review. Eur. J. Pharm. Biopharm. 2009, 71, 23-27.
-
[13]
(13) Thallapally, P. K.; Jetti, R. K. R.; Katz, A. K.; Carrell, H. L.; Singh, K.; Lahiri, K.; Kotha, S.; Boese, R.; Desiraju, G. R. Polymorphism of 1,3,5-trinitrobenzene induced by a trisindane additive. Angew. Chem. Int. Ed. 2004, 43, 1149-1155.
-
[14]
(14) Threlfall, T. L. Analysis of organic polymorphs: a review. Analyst. 1995, 120, 2435-2460.
-
[15]
(15) Hua, G. Y.; Ge, G. Hydrothermal synthesis and crystal structure of two polymorphs of (3-nitro-4-bromophenyl)acetic acid. Journal of Chemical Research 2011, 11, 644-646.
-
[16]
(16) Rigaku CrystalClear, Version 14.0. Rigaku Corporation. Tokyo, Japan 2005.
-
[17]
(17) Sheldrick, G. M. SHElXS97: Programs for Crystal Structure Analysis. University of Göttingen, Germany 1997.
-
[18]
(18) Brandenburg, K. DIAMOND: Crystal and Molecular Structure Visualization, Version 3.1b, Crystal Impact GbR,Bonn, Germany 2006
-
[19]
(19) Mercury 2.3 Supplied with Cambridge Structural Database, CCDC, Cambridge, U.K. 2003-2004.
-
[20]
(20) Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J. CrystalExplorer 3.0. University of Western Australia, Perth, Australia 2012.
-
[21]
(21) Blatov, V. A.; Shevchenko, A. P.; Serenzhkin, V. N. Crystal space analysis by means of Voronoi-Dirichlet polyhedral. Acta Cryst. 1995, A51, 909-916.
-
[22]
(22) Spackman, M. A.; Javatilaka, D. Hirshfeld surface analysis. CrystEngComm. 2009, 11, 19-32.
-
[23]
(23) Ma, Y. H.; Ge, S. W.; Sun, B. W. Synthesis, characterization and theoretical studies of a novel salt (dexmedetomidine: perchloric acid = 1:1) and the investigation of its stability. Chin. J. Struct. Chem. 2015, 34, 1179-1186.
-
[24]
(24) Feng, C.; Gao, G. Y.; Qu, Z. R.; Sun, L. N.; Zhao, H. Exploration of supramolecular architecture in complexes with 1-substituted-1H-[1,2,3]-triazole-4-carboxylic acid: structural elucidation and Hirshfeld surface analysis. J. Inorg. Organomet. P 2015, 25, 1233-1238.
-
[1]
-
-
-
[1]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[2]
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
-
[3]
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
-
[4]
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
-
[5]
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
-
[6]
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
-
[7]
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
-
[8]
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
-
[9]
Xin Dong , Tianqi Chen , Jing Liang , Lei Wang , Huajie Wu , Zhijin Xu , Junhua Luo , Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256
-
[10]
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
-
[11]
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
-
[12]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[13]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[14]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[15]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[16]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[17]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[18]
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
-
[19]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[20]
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(2169)
- HTML views(12)