Citation: MEI Zheng, LI Xiao-Hong, CUI Hong-Ling, WANG Hui-Xian, ZHANG Rui-Zhou. Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound[J]. Chinese Journal of Structural Chemistry, ;2016, 35(1): 16-24. doi: 10.14102/j.cnki.0254-5861.2011-0602 shu

Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound

  • Received Date: 9 October 2015
    Available Online: 13 December 2015

    Fund Project: This project was supported by the National Natural Science Foundation of China (No. U1304111) (No. U1304111)the Innovation Team of Henan University of Science and Technology (2015XTD001) (No. 14HASTIT039)

  • Based on the full optimized molecular geometric structure at 6-311++G** level, the density (ρ), detonation velocity (D), and detonation pressure (P) for a new furazan-based energetic macrocycle compound, hexakis[1,2,5]oxadi-azole[3,4-c:3',4'-e;3'',4''-g:3''',4'''-k:3'''',4''''-m:3''''', 4'''''-o][1,2,9,10]-tetraazacyclohexadecine, were investigated to verify its capacity as high energy density material (HEDM). The infrared spectrum was also predicted. The heat of formation (HOF) was calculated using designed isodesmic reaction. The calculation on the bond dissociation energies (BDEs) was done and the pyrolysis mechanism of the compound was studied. The result shows that the N3-O1 bond in the ring may be the weakest one and the ring cleavage is possible to happen in thermal decomposition. The condensed phase HOF and the crystal density were also calculated for the title compound. The detonation data show that it can be considered as a potential HEDM. These results would provide basic information for the molecular design of novel high energy materials.
  • 加载中
    1. [1]

      (1) Benson, F. R. The High Nitrogen Compounds. Wiley-Interscience: New York 1984, p120-122.

    2. [2]

      (2) Sikder, A. K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1-15.

    3. [3]

      (3) Hiskey, M.; Goldman, N. High-nitrogen energetic materials derived from azotetrazolate. Energ. Mater. 1998, 16, 119-127.

    4. [4]

      (4) Zelenin, A. K.; Trudell, M. L. Synthesis and structure of dinitroazofurazan. J. Heterocycl. Chem. 1998, 35, 151-155.

    5. [5]

      (5) Millar, R. W.; Philbin, S. P.; Claridge, R. P.; Hamid, J. Studies of novel heterocyclic insensitive fligh explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellant Explos. Pyrotech. 2004, 29, 81-92.

    6. [6]

      (6) Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim. Acta 2002, 384, 229-243.

    7. [7]

      (7) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cen. Eur. J. Energet. Mater. 2011, 8, 39-52.

    8. [8]

      (8) Nielsen, A. T. Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials. Academic Press: San Diego 1991, p253-254.

    9. [9]

      (9) David, E.; Chavez, D. A.; Parrish, P. L. The synthesis and characterization of a new furazan heterocyclic system. Synlett. 2012, 23, 2126-2128.

    10. [10]

      (10) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.

    11. [11]

      (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 02.

    12. [12]

      (12) Li, X. H.; Cheng, Q. D.; Zhang, X. Z. Density functional theory study of several nitrotriazole derivatives. J. Energet. Mater. 2010, 28, 251-272.

    13. [13]

      (13) Kamlet, M. J.; Jacobs, S. J. A simple method for calculating detonation properties of C,H,N,O explosives. J. Chem. Phys. 1968, 48, 23-35.

    14. [14]

      (14) Atkins, P. W. Physical Chemistry. Oxford University Press: Oxford 1982, p247-249.

    15. [15]

      (15) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of two di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO,

    16. [16]

      as potential energetic compounds. Cen. Eur. J. Energet. Mater. 2013, 10, 37-52.

    17. [17]

      (16) Byrd, E. F. C.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum chemical calculations. J. Phys. Chem. A 2006, 10, 1005-1013.

    18. [18]

      (17) Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580-592.

    19. [19]

      (18) Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141, 280-288.

    20. [20]

      (19) Frank, H. A.; Olga, K.; David, G. W. Table of bond lengths determined by X-ray and neutron diffraction. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.

    21. [21]

      (20) Batog, L. V.; Konstantinova, L. S.; Eman, V. E.; Sukhanov, M. S.; Batsanov, A. S.; Struchkov, Y. T.; Lebedev, O. V.; Khmel'nitskii, L. I. Novel method for synthesis of 3,4:7,8:11,12:15,16-tetrafurazano-1,2,5,6,9,10,13,14-octaazacyclohexadeka-1,3,5,7,9,11,13,15-octaene and its crystal structure. Chem. Heterocy. Comp. 1996, 32, 352-354.

    22. [22]

      (21) Lide, D. R. Handbook of Chemistry and Physics. 84th ed. CRC Press LLC: Boca Raton 2004, 108-121.

    23. [23]

      (22) Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589-607.

    24. [24]

      (23) Hobbs, M. L.; Baer, M. R. Calibration of the BKW-EOS with a large product species data base and measured C-J properties, in: proceedings of the 10th symposium (international) on detonation, ONR 33395-12, Boston, MA, 12-16 July. 1993, p409-418.

    25. [25]

      (24) Xiao, H. M.; Chen, Z. X. The Modern Theory for Tetrazole Chemistry. Science Press: Beijing 2000, p153-154.

    26. [26]

      (25) Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Comparative theoretical studies of energetic substituted carbon- and nitrogen-bridged difurazans. J. Phys. Chem. A 2010, 114, 603-612.

  • 加载中
    1. [1]

      ZHANG Rui-ZhouLI Xiao-Hong . Theoretical Investigations on the Structure, Density, Thermodynamic and Performance Properties of Bis(2,2-dinitropropyl) formal. Chinese Journal of Structural Chemistry, 2014, 33(1): 71-78.

    2. [2]

      Wang WanjunLi HuanPan RenmingZhu Weihua . Molecular Design of High Energy Density Materials with Bis(3, 4, 5-substituted-pyrazolyl)methane Derivatives. Chinese Journal of Organic Chemistry, 2019, 39(5): 1362-1371. doi: 10.6023/cjoc201812001

    3. [3]

      Wang WanjunLi HuanPan RenmingZhu Weihua . Molecular Design and Property Prediction for a Series of 3, 3-Bis(difluoroamino)-1, 5-substituted-pentane Derivatized as Energetic Plasticizers. Chinese Journal of Organic Chemistry, 2019, 39(1): 170-176. doi: 10.6023/cjoc201808024

    4. [4]

      Wei YunyangLu ChunxuLu MingWang YuLi Zhiping . Products of Cyclisation and Mannich Condensation of Methylenedinitramine. Chinese Journal of Applied Chemistry, 1994, 44(5): 104-106.

    5. [5]

      Bu-Tong LILu-Lin LIChuan YANG . Computational Study of Azide-oxirane as High-energy-density Materials. Chinese Journal of Structural Chemistry, 2020, 39(7): 1261-1265. doi: 10.14102/j.cnki.0254–5861.2011–2587

    6. [6]

      Bu-Tong LILu-Lin LIJia-Xin HE . Looking for High Energy Density Molecules in the Nitro-substituted Derivatives of Pyridazine. Chinese Journal of Structural Chemistry, 2020, 39(5): 849-854. doi: 10.14102/j.cnki.0254–5861.2011–2531

    7. [7]

      Zhang QianfengChang GuanjunZhang Lin . Synthesis and properties of novel heat-resistant fluorescent conjugated polymers with bisindolylmaleimide. Chinese Chemical Letters, 2018, 29(3): 513-516. doi: 10.1016/j.cclet.2017.08.019

    8. [8]

      CHEN Peng-YuanZHANG LinZHU Shun-GuanCHENG Guang-Bin . Intermolecular Interactions, Thermodynamic Properties, Detonation Performance, and Sensitivity of TNT/CL-20 Cocrystal Explosive. Chinese Journal of Structural Chemistry, 2016, 35(2): 246-256. doi: 10.14102/j.cnki.0254-5861.2011-0887

    9. [9]

      CHEN Peng-YuanZHANG LinZHU Shun-GuanCHENG Guang-Bin . Intermolecular Interactions, Thermodynamic Properties, Detonation Performance, and Sensitivity of TNT/CL-20 Cocrystal Explosive. Chinese Journal of Structural Chemistry, 2016, 35(2): 246-256. doi: 10.14102/j.cnki.0254-5861.2011-0887

    10. [10]

      Wenya WuYing BaiXinran WangChuan Wu . Sulfone-based high-voltage electrolytes for high energy density rechargeable lithium batteries: Progress and perspective. Chinese Chemical Letters, 2021, 32(4): 1309-1315. doi: 10.1016/j.cclet.2020.10.009

    11. [11]

      LI Bu-TongCHI Wei-JieLI Lu-Lin . Theoretical Calculation about the High Energy Density Molecules of Nitrate Ester Substitution Derivatives of Prismane. Chinese Journal of Structural Chemistry, 2016, 35(8): 1306-1312. doi: 10.14102/j.cnki.0254-5861.2011-1186

    12. [12]

      Xu Guang Gao Guo Rong Hu Zhong Dong Peng Ke Du Xin Rong Deng . Pure LiFePO4 with high energy density prepared by water quenching treatment. Chinese Chemical Letters, 2007, 18(10): 1256-1260. doi: 10.1016/j.cclet.2007.08.017

    13. [13]

      Asare Owusu KwadwoWang ZhaoyangQu LongbingLiu Zi'angAbdul-Aziz Mehrez JaafarWei QiulongZhou LiangMai Liqiang . Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. Chinese Chemical Letters, 2020, 31(6): 1620-1624. doi: 10.1016/j.cclet.2019.09.045

    14. [14]

      Ming XuYuheng LiuQiang YuShihao FengLiang ZhouLiqiang Mai . Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors. Chinese Chemical Letters, 2021, 32(1): 184-189. doi: 10.1016/j.cclet.2020.11.004

    15. [15]

      Bu-Tong LILu-Lin LIQuan-Bao ZHOU . Are the Nitro- and Amino-substituted Piperidine High-energy-density Compounds?. Chinese Journal of Structural Chemistry, 2020, 39(7): 1266-1270. doi: 10.14102/j.cnki.0254–5861.2011–2619

    16. [16]

      Bu-Tong LILu-Lin LIChuan YANG . Theoretical Study on Nitroso-Substituted Derivatives of Azetidine as Potential High Energy Density Compounds. Chinese Journal of Structural Chemistry, 2020, 39(4): 643-650. doi: 10.14102/j.cnki.0254-5861.2011-2501

    17. [17]

      Yu Min Han Zhi Li Jiu Li Luo . Temperature waves in chemical reaction-diffusion-heat conduction systems with two ends respectively subject to Dirichlet and no-flux conditions. Chinese Chemical Letters, 2007, 18(11): 1427-1430. doi: 10.1016/j.cclet.2007.09.021

    18. [18]

      Wen Hua ZHANG Jiu Li LUO . Thermokinetic Behaviour Degenerated from Limit Cycle Oscillation of Isothermal B-Z Reaction System due to Temperature Controlling of Heat Compensation Type. Chinese Chemical Letters, 2004, 15(9): 1075-1078.

    19. [19]

      Hong Tao YAN Xiao Yun ZHU . Determination of Kinetic Parameters and Metal Ions in Urea-Urease System Based on the Biochemical Reaction Heat Induced Laser Beam Deflection. Chinese Chemical Letters, 2000, 12(2): 157-160.

    20. [20]

      Qiang HE Jun Bai LI . “Lotus” Domain Formation by the Hydrolysis Reaction of Phospholipase D to Phospholipid Monolayer. Chinese Chemical Letters, 2003, 14(11): 1199-1202.

Metrics
  • PDF Downloads(2)
  • Abstract views(2009)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return