Citation:
MEI Zheng, LI Xiao-Hong, CUI Hong-Ling, WANG Hui-Xian, ZHANG Rui-Zhou. Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound[J]. Chinese Journal of Structural Chemistry,
;2016, 35(1): 16-24.
doi:
10.14102/j.cnki.0254-5861.2011-0602
-
Based on the full optimized molecular geometric structure at 6-311++G** level, the density (ρ), detonation velocity (D), and detonation pressure (P) for a new furazan-based energetic macrocycle compound, hexakis[1,2,5]oxadi-azole[3,4-c:3',4'-e;3'',4''-g:3''',4'''-k:3'''',4''''-m:3''''', 4'''''-o][1,2,9,10]-tetraazacyclohexadecine, were investigated to verify its capacity as high energy density material (HEDM). The infrared spectrum was also predicted. The heat of formation (HOF) was calculated using designed isodesmic reaction. The calculation on the bond dissociation energies (BDEs) was done and the pyrolysis mechanism of the compound was studied. The result shows that the N3-O1 bond in the ring may be the weakest one and the ring cleavage is possible to happen in thermal decomposition. The condensed phase HOF and the crystal density were also calculated for the title compound. The detonation data show that it can be considered as a potential HEDM. These results would provide basic information for the molecular design of novel high energy materials.
-
-
-
[1]
(1) Benson, F. R. The High Nitrogen Compounds. Wiley-Interscience: New York 1984, p120-122.
-
[2]
(2) Sikder, A. K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1-15.
-
[3]
(3) Hiskey, M.; Goldman, N. High-nitrogen energetic materials derived from azotetrazolate. Energ. Mater. 1998, 16, 119-127.
-
[4]
(4) Zelenin, A. K.; Trudell, M. L. Synthesis and structure of dinitroazofurazan. J. Heterocycl. Chem. 1998, 35, 151-155.
-
[5]
(5) Millar, R. W.; Philbin, S. P.; Claridge, R. P.; Hamid, J. Studies of novel heterocyclic insensitive fligh explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellant Explos. Pyrotech. 2004, 29, 81-92.
-
[6]
(6) Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim. Acta 2002, 384, 229-243.
-
[7]
(7) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cen. Eur. J. Energet. Mater. 2011, 8, 39-52.
-
[8]
(8) Nielsen, A. T. Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials. Academic Press: San Diego 1991, p253-254.
-
[9]
(9) David, E.; Chavez, D. A.; Parrish, P. L. The synthesis and characterization of a new furazan heterocyclic system. Synlett. 2012, 23, 2126-2128.
-
[10]
(10) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.
-
[11]
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 02.
-
[12]
(12) Li, X. H.; Cheng, Q. D.; Zhang, X. Z. Density functional theory study of several nitrotriazole derivatives. J. Energet. Mater. 2010, 28, 251-272.
-
[13]
(13) Kamlet, M. J.; Jacobs, S. J. A simple method for calculating detonation properties of C,H,N,O explosives. J. Chem. Phys. 1968, 48, 23-35.
-
[14]
(14) Atkins, P. W. Physical Chemistry. Oxford University Press: Oxford 1982, p247-249.
-
[15]
(15) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of two di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO,
-
[16]
as potential energetic compounds. Cen. Eur. J. Energet. Mater. 2013, 10, 37-52.
-
[17]
(16) Byrd, E. F. C.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum chemical calculations. J. Phys. Chem. A 2006, 10, 1005-1013.
-
[18]
(17) Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580-592.
-
[19]
(18) Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141, 280-288.
-
[20]
(19) Frank, H. A.; Olga, K.; David, G. W. Table of bond lengths determined by X-ray and neutron diffraction. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.
-
[21]
(20) Batog, L. V.; Konstantinova, L. S.; Eman, V. E.; Sukhanov, M. S.; Batsanov, A. S.; Struchkov, Y. T.; Lebedev, O. V.; Khmel'nitskii, L. I. Novel method for synthesis of 3,4:7,8:11,12:15,16-tetrafurazano-1,2,5,6,9,10,13,14-octaazacyclohexadeka-1,3,5,7,9,11,13,15-octaene and its crystal structure. Chem. Heterocy. Comp. 1996, 32, 352-354.
-
[22]
(21) Lide, D. R. Handbook of Chemistry and Physics. 84th ed. CRC Press LLC: Boca Raton 2004, 108-121.
-
[23]
(22) Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589-607.
-
[24]
(23) Hobbs, M. L.; Baer, M. R. Calibration of the BKW-EOS with a large product species data base and measured C-J properties, in: proceedings of the 10th symposium (international) on detonation, ONR 33395-12, Boston, MA, 12-16 July. 1993, p409-418.
-
[25]
(24) Xiao, H. M.; Chen, Z. X. The Modern Theory for Tetrazole Chemistry. Science Press: Beijing 2000, p153-154.
-
[26]
(25) Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Comparative theoretical studies of energetic substituted carbon- and nitrogen-bridged difurazans. J. Phys. Chem. A 2010, 114, 603-612.
-
[1]
-
-
-
[1]
ZHANG Rui-Zhou , LI Xiao-Hong . Theoretical Investigations on the Structure, Density, Thermodynamic and Performance Properties of Bis(2,2-dinitropropyl) formal. Chinese Journal of Structural Chemistry, 2014, 33(1): 71-78.
-
[2]
Wang Wanjun , Li Huan , Pan Renming , Zhu Weihua . Molecular Design of High Energy Density Materials with Bis(3, 4, 5-substituted-pyrazolyl)methane Derivatives. Chinese Journal of Organic Chemistry, 2019, 39(5): 1362-1371. doi: 10.6023/cjoc201812001
-
[3]
Wang Wanjun , Li Huan , Pan Renming , Zhu Weihua . Molecular Design and Property Prediction for a Series of 3, 3-Bis(difluoroamino)-1, 5-substituted-pentane Derivatized as Energetic Plasticizers. Chinese Journal of Organic Chemistry, 2019, 39(1): 170-176. doi: 10.6023/cjoc201808024
-
[4]
Wei Yunyang , Lu Chunxu , Lu Ming , Wang Yu , Li Zhiping . Products of Cyclisation and Mannich Condensation of Methylenedinitramine. Chinese Journal of Applied Chemistry, 1994, 44(5): 104-106.
-
[5]
Bu-Tong LI , Lu-Lin LI , Chuan YANG . Computational Study of Azide-oxirane as High-energy-density Materials. Chinese Journal of Structural Chemistry, 2020, 39(7): 1261-1265. doi: 10.14102/j.cnki.0254–5861.2011–2587
-
[6]
Zhang Qianfeng , Chang Guanjun , Zhang Lin . Synthesis and properties of novel heat-resistant fluorescent conjugated polymers with bisindolylmaleimide. Chinese Chemical Letters, 2018, 29(3): 513-516. doi: 10.1016/j.cclet.2017.08.019
-
[7]
CHEN Peng-Yuan , ZHANG Lin , ZHU Shun-Guan , CHENG Guang-Bin . Intermolecular Interactions, Thermodynamic Properties, Detonation Performance, and Sensitivity of TNT/CL-20 Cocrystal Explosive. Chinese Journal of Structural Chemistry, 2016, 35(2): 246-256. doi: 10.14102/j.cnki.0254-5861.2011-0887
-
[8]
CHEN Peng-Yuan , ZHANG Lin , ZHU Shun-Guan , CHENG Guang-Bin . Intermolecular Interactions, Thermodynamic Properties, Detonation Performance, and Sensitivity of TNT/CL-20 Cocrystal Explosive. Chinese Journal of Structural Chemistry, 2016, 35(2): 246-256. doi: 10.14102/j.cnki.0254-5861.2011-0887
-
[9]
Wenya Wu , Ying Bai , Xinran Wang , Chuan Wu . Sulfone-based high-voltage electrolytes for high energy density rechargeable lithium batteries: Progress and perspective. Chinese Chemical Letters, 2021, 32(4): 1309-1315. doi: 10.1016/j.cclet.2020.10.009
-
[10]
LI Bu-Tong , CHI Wei-Jie , LI Lu-Lin . Theoretical Calculation about the High Energy Density Molecules of Nitrate Ester Substitution Derivatives of Prismane. Chinese Journal of Structural Chemistry, 2016, 35(8): 1306-1312. doi: 10.14102/j.cnki.0254-5861.2011-1186
-
[11]
Xu Guang Gao , Guo Rong Hu , Zhong Dong Peng , Ke Du , Xin Rong Deng . Pure LiFePO4 with high energy density prepared by water quenching treatment. Chinese Chemical Letters, 2007, 18(10): 1256-1260. doi: 10.1016/j.cclet.2007.08.017
-
[12]
Asare Owusu Kwadwo , Wang Zhaoyang , Qu Longbing , Liu Zi'ang , Abdul-Aziz Mehrez Jaafar , Wei Qiulong , Zhou Liang , Mai Liqiang . Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. Chinese Chemical Letters, 2020, 31(6): 1620-1624. doi: 10.1016/j.cclet.2019.09.045
-
[13]
Ming Xu , Yuheng Liu , Qiang Yu , Shihao Feng , Liang Zhou , Liqiang Mai . Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors. Chinese Chemical Letters, 2021, 32(1): 184-189. doi: 10.1016/j.cclet.2020.11.004
-
[14]
Bu-Tong LI , Lu-Lin LI , Quan-Bao ZHOU . Are the Nitro- and Amino-substituted Piperidine High-energy-density Compounds?. Chinese Journal of Structural Chemistry, 2020, 39(7): 1266-1270. doi: 10.14102/j.cnki.0254–5861.2011–2619
-
[15]
Liu Weiwei , Zhu Menghua , Liu Jinghua , Li Xin , Liu Jian . Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode. Chinese Chemical Letters, 2019, 30(3): 750-756. doi: 10.1016/j.cclet.2018.09.013
-
[16]
Zheng Junsheng , Qin Nan , Jin Liming , Guo Xin , Shen Chao , Wu Qiang , Zheng Jim P. . Constructing an unbalanced structure toward high working voltage for improving energy density of non-aqueous carbon-based electrochemical capacitors. Chinese Chemical Letters, 2020, 31(3): 903-908. doi: 10.1016/j.cclet.2019.09.048
-
[17]
Qiang HE , Jun Bai LI . “Lotus” Domain Formation by the Hydrolysis Reaction of Phospholipase D to Phospholipid Monolayer. Chinese Chemical Letters, 2003, 14(11): 1199-1202.
-
[18]
Zhan Zhu LIU , Ye Feng TANG , Shi Zhi CHEN . Formation of Benzyl Oxazole, A Competitive Path with the Classical Bishler-Napieralski Reaction. Chinese Chemical Letters, 2001, 12(11): 947-950.
-
[19]
Yuan MA , Xiang Hong LI , Yi CHEN , Yu Ping FENG , Yu Fen ZHAO . Formation of Dithymidylic Acid by Ester Exchange Reaction on N-Phosphoryl Serine. Chinese Chemical Letters, 1996, 7(10): 905-906.
-
[20]
Yu Min Han , Zhi Li , Jiu Li Luo . Temperature waves in chemical reaction-diffusion-heat conduction systems with two ends respectively subject to Dirichlet and no-flux conditions. Chinese Chemical Letters, 2007, 18(11): 1427-1430. doi: 10.1016/j.cclet.2007.09.021
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(1968)
- HTML views(21)