Citation: Jin-Ting WU, Jin XU, Hong-Bo LI, Jian-Guo ZHANG. Bridged Effects of Various Heterocyclic Linkages in Bis-1, 2, 4-triazoles[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1433-1438. doi: 10.14102/j.cnki.0254–5861.2011–3181 shu

Bridged Effects of Various Heterocyclic Linkages in Bis-1, 2, 4-triazoles

  • Corresponding author: Jin-Ting WU, wjt1234@163.com Hong-Bo LI, li-honggg@163.com
  • Received Date: 16 March 2021
    Accepted Date: 28 April 2021

    Fund Project: Opening Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) KFJJ20-03MDoctoral Foundation of SWUST 17zx7128Major Special Projects of the Equipment Development Department of the Central Military Commission of China 14021001040305-5

Figures(4)

  • There are numerous studies on nitrogen-rich heterocycles explosive design and synthesis due to their good detonation activity. A series of bistriazoles with different heterocyclic linkages were designed and calculated by density functional theory (DFT) b3lyp/6-311+G* method. The structure, detonation properties and stability of the energetic compounds have been investigated. According to the results from heats of formation (HOFs), the HOF values of bistriazole with heterocycle linkage (M1~M4) are higher than those of the corresponding diamino-heterocycle bridged ones (M5~M8). By analyzing the bond dissociation energy (BDE), -NH- is not conducive to increase the stability of the derivatives. In terms of detonation performances and stability of bistriazole derivatives, the combination of furazan or tetrazole linkages with bis-triazoles may be considered as potential candidates for energetic materials.
  • 加载中
    1. [1]

      Zhao, G.; Kumar, D.; Yin, P.; He, C.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Construction of polynitro compounds as high-performance oxidizers via a two-step nitration of various functional groups. Org. Lett. 2019, 21, 1073-1077.  doi: 10.1021/acs.orglett.8b04114

    2. [2]

      Domasevitch, K. V.; Gospodinov, I.; Krautscheid, H.; Klapötke, T. M.; Stierstorfer, J. Facile and selective polynitrations at the 4-pyrazolyl dual backbone: straightforward access to a series of high-density energetic materials. New J. Chem. 2019, 43, 1305-1312.  doi: 10.1039/C8NJ05266B

    3. [3]

      Ma, J.; Tang, Y.; Cheng, G.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Energetic derivatives of 8-nitropyrazolo[1, 5-a][1, 3, 5]triazine-2, 4, 7-triamine: achieving balanced explosives by fusing pyrazole with triazine. Org. Lett. 2020, 22, 1321-1325.  doi: 10.1021/acs.orglett.9b04642

    4. [4]

      Qu, Y.; Babailov, S. P. Azo-linked high-nitrogen energetic materials. J. Mater. Chem. A 2018, 6, 1915-1940.  doi: 10.1039/C7TA09593G

    5. [5]

      Gao, H.; Zhang, Q.; Shreeve, J. M. Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 2020, 8, 4193-4216  doi: 10.1039/C9TA12704F

    6. [6]

      Klapötke, T. M. New nitrogen-rich high explosives. Struct. Bond 2007, 125, 85-121.

    7. [7]

      Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Energetic nitrogen-rich salts and ionic liquids. Angew. Chem. Int. Ed. 2006, 45, 3584-3601.  doi: 10.1002/anie.200504236

    8. [8]

      Wang, B.; Zhang, G.; Huo, H.; Fan, Y.; Fan, X. Synthesis, characterization and thermal properties of energetic compounds derived from 3-amino-4-(tetrazol-5-yl)furazan. Chin. J. Chem. 2011, 29, 919-924.  doi: 10.1002/cjoc.201190189

    9. [9]

      Shaposhnikov, S. D.; Korobov, N. V.; Sergievskii, A. V.; Pirogov, S. V.; Mel'nikova, S. F.; Tselinskii, I. V. New heterocycles with a 3-aminofurazanyl substituent. Russ. J. Org. Chem. 2002, 38, 1351-1355.  doi: 10.1023/A:1021668216426

    10. [10]

      Wang, Q.; Shao, Y.; Lu, M. Salt formation: route to improve energetic performance and molecular stability simultaneously. Cryst. Growth Des. 2020, 20, 197-205.  doi: 10.1021/acs.cgd.9b00997

    11. [11]

      Dippold, A. A.; Klapötke, T. M.; Martin, F. A.; Wiedbrauk, S. Nitraminoazoles based on ANTA – a comprehensive study of structural and energetic properties. Eur. J. Inorg. Chem. 2012, 14, 242-2443.

    12. [12]

      Bian, C.; Zhang, M.; Li, C.; Zhou, Z. 3-Nitro-1-(2H-tetrazol-5-yl)-1H-1, 2, 4-triazol-5-amine (HANTT) and its energetic salts: highly thermally stable energetic materials with low sensitivity. J. Mater. Chem. A 2015, 3, 163-169.  doi: 10.1039/C4TA04107K

    13. [13]

      Klapötke, T. M.; Kurz, M. Q.; Schmid, P. C.; Stierstorfer, J. Energetic improvements by N-oxidation: insensitive amino-hydroximoyl-tetrazole-2N-oxides. J. Energ. Mater. 2015, 33, 191-201.  doi: 10.1080/07370652.2014.963743

    14. [14]

      Benz, M.; Klapötke, T. M.; Stierstorfer, J. Combining performance with thermal stability: synthesis and characterization of 5-(3, 5-dinitro-1H-pyrazol-4-yl)-1H-tetrazole and its energetic derivatives. Z. Anorg. Allg. Chem. 2020, 646, 1380-1388.  doi: 10.1002/zaac.202000123

    15. [15]

      Saikia, A.; Sivabalan, R.; Polke, B. G.; Gore, G. M.; Singh, A.; Rao, A. S.; Sikder, A. K. Synthesis and characterization of 3, 6-bis(1H-1, 2, 3, 4-tetrazol-5-ylamino)-1, 2, 4, 5-tetrazine (BTATz): novel high-nitrogen content insensitive high energy material. J. Hazard. Mater. 2009, 170, 306-313.  doi: 10.1016/j.jhazmat.2009.04.095

    16. [16]

      Klapötke, T. M.; Schmid, P. C.; Schnell, S.; Stierstorfer, J. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4, 40, 5, 50-tetraamino-3, 3΄-bi-1, 2, 4-triazolium cation. J. Mater. Chem. A 2015, 3, 2658-2668.  doi: 10.1039/C4TA05964F

    17. [17]

      Wu, J. T.; Zhang, J. G.; Xin, Y.; Wu, K. Energetic oxygen-containing tetrazole salts based on 3, 4-diaminotriazole. Chem. Asian J. 2015, 10, 1239-1244.  doi: 10.1002/asia.201500075

    18. [18]

      Lang, Q.; Sun, Q.; Wang, Q.; Lin, Q.; Lu, M. Embellishing bis-1, 2, 4-triazole with four nitroamino groups: advanced high-energy-density materials with remarkable performance and good stability. J. Mater. Chem. A 2020, 8, 11752-11760.  doi: 10.1039/D0TA03008B

    19. [19]

      Yu, Q.; Chinnam, A. K.; Yin, P.; Gregory, H. I.; Parrish, D. A.; Shreeve, J. M. Finding furoxan rings. J. Mater. Chem. A 2020, 8, 5859-5864.  doi: 10.1039/D0TA01538E

    20. [20]

      Hu, L.; Gao, H.; Shreeve, J. M. Challenging the limits of nitrogen and oxygen content of fused rings. J. Mater. Chem. A 2019, 8, 17411-17414.

    21. [21]

      Joo, Y. H.; Shreeve, J. M. High-densityenergetic mono-or bis(oxy)-5-nitroiminotetrazoles. Angew. Chem. Int. Ed. 2010, 49, 7320-7323.  doi: 10.1002/anie.201003866

    22. [22]

      Chinnam, A. K.; Yu, Q.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Azo- and methylene-bridged mixed azoles for stable and insensitive energetic applications. Dalton Trans. 2020, 49, 11498-11503. ]  doi: 10.1039/D0DT02223C

    23. [23]

      Yu, Q.; Yang, H.; Imler, G. H.; Parrish, D. A.; Cheng, G.; Shreeve, J. M. Derivatives of 3, 6-bis(3-aminofurazan-4-ylamino)-1, 2, 4, 5-tetrazine: excellent energetic properties with lower sensitivities. ACS Appl. Mater. Inter. 2020, 12, 31522-31531.  doi: 10.1021/acsami.0c08526

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 01, Gaussian, Inc., Pittsburgh PA 2003.

    25. [25]

      Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822-8824.  doi: 10.1103/PhysRevB.33.8822

    26. [26]

      Wiberg, K. B.; Ochterski, J. W. A comparison of different theoretical models for calculating isodesmic reaction energies for small ring and related compound, J. Comput. Chem. 1997, 18, 108-114.  doi: 10.1002/(SICI)1096-987X(19970115)18:1<108::AID-JCC10>3.0.CO;2-I

    27. [27]

      Rice, B. M.; Pai, S. V.; Hare, J. Predicting heats of formation of energetic materials using quantum chemical calculations. Combust. Flame 1999, 118, 445-458  doi: 10.1016/S0010-2180(99)00008-5

    28. [28]

      Byrd, E. F.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J. Phys. Chem. A 2006, 110, 1005-1013.  doi: 10.1021/jp0536192

    29. [29]

      Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys. 1968, 48, 23-35.  doi: 10.1063/1.1667908

    30. [30]

      Qiu, L.; Gong, X. D.; Zheng, J.; Xiao, H. M. Theoretical studies on polynitro-1, 3-bishomopentaprismanes as potential high energy density compounds. J. Hazard. Mater. 2009, 166, 931-938.  doi: 10.1016/j.jhazmat.2008.11.099

    31. [31]

      Chung, G. S.; Schimidt, M. W.; Gordon, M. S. An ab initio study of potential energy surfaces for N8 isomers. J. Phys. Chem. A 2000, 104, 5647-5650.  doi: 10.1021/jp0004361

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    7. [7]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    8. [8]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    9. [9]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    10. [10]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    11. [11]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    12. [12]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    13. [13]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    16. [16]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    17. [17]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    18. [18]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    19. [19]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    20. [20]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

Metrics
  • PDF Downloads(1)
  • Abstract views(267)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return