Citation: Man WANG, Xiao-Yuan WU, Sa-Sa WANG, Can-Zhong LU. A Stable Polyoxometalate-based Coordination Polymer for Light Driven Degradation of Organic Dye Pollutant[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1449-1455. doi: 10.14102/j.cnki.0254–5861.2011–3156 shu

A Stable Polyoxometalate-based Coordination Polymer for Light Driven Degradation of Organic Dye Pollutant

  • Corresponding author: Can-Zhong LU, czlu@fjirsm.ac.cn
  • Received Date: 24 February 2021
    Accepted Date: 29 March 2021

    Fund Project: the Key Research Program of Frontier Science, CAS QYZDJ-SSW-SLH033the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21521061the National Natural Science Foundation of China 21773247the National Natural Science Foundation of China 21875252the National Natural Science Foundation of China 52073286

Figures(4)

  • A new POM-based coordination polymer, [Cl2Cu11(trz)8][H3SiW12O40] (1), was successfully obtained under hydrothermal reaction. The compound was characterized by single-crystal X-ray diffraction, TG analyses, IR spectra and PXRD analysis. Compound 1 shows extreme stability and outstanding catalytic activity to the degradation of organic dye pollutant.
  • 加载中
    1. [1]

      Ma, P. T.; Hu, F.; Wan, R.; Huo, Y.; Zhang, D. D.; Niu, J. Y.; Wang, J. P. Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. J. Mater. Chem. C. 2016, 4, 5424–5433.  doi: 10.1039/C6TC00960C

    2. [2]

      Yamase, T. Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–325.  doi: 10.1021/cr9604043

    3. [3]

      Stracke, J. J.; Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. J. Am. Chem. Soc. 2011, 133, 14872–14875.  doi: 10.1021/ja205569j

    4. [4]

      Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energ. Environ. Sci. 2017, 10, 788–798.  doi: 10.1039/C6EE03768B

    5. [5]

      Aldamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Marti-Gastaldo, C.; Gaita-Arino, A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J. Am. Chem. Soc. 2008, 130, 8874–8875.  doi: 10.1021/ja801659m

    6. [6]

      Reinoso, S.; Vitoria, P.; San Felices, L.; Montero, A.; Lezama, L.; Gutierrez-Zorrilla, J. M. Tetrahydroxy-p-benzoquinone as a source of polydentate O-donor ligands. Synthesis, crystal structure, and magnetic properties of the [Cu(bpy)(dhmal)]2 dimer and the two-dimensional [{SiW12O40}{Cu2(bpy)2(H2O)(ox)}2]·16H2O inorganic-metalorganic hybrid. Inorg. Chem. 2007, 46, 1237–1249.  doi: 10.1021/ic061671m

    7. [7]

      Sato, R.; Suzuki, K.; Sugawa, M.; Mizuno, N. Heterodinuclear lanthanoid-containing polyoxometalates: stepwise synthesis and single-molecule magnet behavior. Chem. Eur. J. 2013, 19, 12982–12990.  doi: 10.1002/chem.201302596

    8. [8]

      Gao, N.; Sun, H.; Dong, K.; Ren, J.; Duan, T.; Xu, C.; Qu, X. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer's disease. Nat. Commun. 2014, 5, 3422.  doi: 10.1038/ncomms4422

    9. [9]

      Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–357.  doi: 10.1021/cr960396q

    10. [10]

      Han, X. B.; Li, Y. G.; Zhang, Z. M.; Tan, H. Q.; Lu, Y.; Wang, E. B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493.  doi: 10.1021/jacs.5b01329

    11. [11]

      Yu, L.; Du, X.; Ding, Y.; Chen, H.; Zhou, P. Efficient visible light-driven water oxidation catalyzed by an all-inorganic copper-containing polyoxometalate. Chem. Commun. 2015, 51, 17443–17446.  doi: 10.1039/C5CC07119D

    12. [12]

      Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.  doi: 10.1021/cr500390v

    13. [13]

      Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632.  doi: 10.1039/C3CS60404G

    14. [14]

      Sha, J. Q.; Yang, X. Y.; Zhu, P. P.; Lan, Y. Q.; Sheng, N. Two new silver triazole frameworks with polyoxometalate templates. RSC Adv. 2016, 6, 108328–108334.  doi: 10.1039/C6RA23809B

    15. [15]

      Zhu, P. P.; Sheng, N.; Li, M. T.; Li, J. S.; Liu, G. D.; Yang, X. Y.; Sha, J. Q.; Zhu, M. L.; Jiang, J. Z. Fabrication and electrochemical performance of unprecedented POM-based metal-carbene frameworks. J. Mater. Chem. A. 2017, 5, 17920–17925.  doi: 10.1039/C7TA05254E

    16. [16]

      Yang, X. Y.; Wei, T.; Li, J. S.; Sheng, N.; Zhu, P. P.; Sha, J. Q.; Wang, T.; Lan, Y. Q. Polyoxometalate-incorporated metallapillararene/metallacalixarene metal-organic frameworks as anode materials for lithium ion batteries. Inorg. Chem. 2017, 56, 8311–8318.  doi: 10.1021/acs.inorgchem.7b00995

    17. [17]

      Li, D.; Ma, X.; Wang, Q.; Ma, P.; Niu, J.; Wang, J. Copper-containing polyoxometalate-based metal-organic frameworks as highly efficient heterogeneous catalysts toward selective oxidation of alkylbenzenes. Inorg. Chem. 2019, 58, 15832–15840.  doi: 10.1021/acs.inorgchem.9b02189

    18. [18]

      Zhou, E. L.; Qin, C.; Huang, P.; Wang, X. L.; Chen, W. C.; Shao, K. Z.; Su, Z. M. A stable polyoxometalate-pillared metal-organic framework for proton-conducting and colorimetric biosensing. Chem. Eur. J. 2015, 21, 11894–11898.  doi: 10.1002/chem.201501515

    19. [19]

      Yang, X.; Zhu, P.; Ren, J.; Chen, Y.; Li, X.; Sha, J.; Jiang, J. Surfactant-assisted synthesis and electrochemical properties of an unprecedented polyoxometalate-based metal-organic nanocaged framework. Chem. Commun. 2019, 55, 1201–1204.  doi: 10.1039/C8CC08559E

    20. [20]

      Li, X.; Yang, X. Y.; Sha, J. Q.; Han, T.; Du, C. J.; Sun, Y. J.; Lan, Y. Q. POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for l-cysteine "On-Off Switch" colorimetric biosensing. ACS Appl. Mater. Interfaces. 2019, 11, 16896–16904.  doi: 10.1021/acsami.9b00872

    21. [21]

      Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Crystallograp. Sect. B Struct. Sci. 1991, 47, 192–197.  doi: 10.1107/S0108768190011041

    22. [22]

      Wang, S. S.; Yang, W. B.; Yang, M.; Wu, X. Y.; Wu, W.; Wang, S. X.; Lin, L.; Lu, C. Z. A bi-polyoxometallate-based host-guest metal-organic framework. Chem. Commun. 2020, 56, 2503–2506.  doi: 10.1039/C9CC09008H

    23. [23]

      Chen, D. M.; Zheng, Y. P.; Shi, D. Y.; Fang, S M. An acid-base resistant polyoxometalate-based metal-organic framework constructed from {Cu4Cl}7+ and {Cu2(CO2)4} clusters for photocatalytic degradation of organic dye. J. Solid State Chem. 2020, 287, 121384.  doi: 10.1016/j.jssc.2020.121384

    24. [24]

      Yang, Y.; Wu, Q.; Guo, Y.; Hu, C.; Wang, E. Efficient degradation of dye pollutants on nanoporous polyoxotungstate-anatase composite under visible-light irradiation. J. Mol. Catal. A-Chem. 2005, 225, 203–212.  doi: 10.1016/j.molcata.2004.08.031

    25. [25]

      Wang, X.; Li, Y. H.; Zhang, T.; Ma, S. J.; Wang, X. L. Three polyoxometalate-tuned copper complexes based on in situ ligand transformation: syntheses, structures, and properties. J. Coord. Chem. 2020, 73, 2533–2545.  doi: 10.1080/00958972.2020.1825698

    26. [26]

      Jiao, Y. Q.; Qin, C.; Zang, H. Y.; Chen, W. C.; Wang, C. G.; Zheng, T. T.; Shao, K. Z.; Su, Z. M. Assembly of organic-inorganic hybrid materials constructed from polyoxometalate and metal-1, 2, 4-triazole units: synthesis, structures, magnetic, electrochemical and photocatalytic properties. CrystEngComm. 2015, 17, 2176–2189.  doi: 10.1039/C4CE02007C

    27. [27]

      Cong, B. W.; Su, Z. H.; Zhao, Z. F.; Yu, B. Y.; Zhao, W. Q.; Xia, L.; Ma, X. J.; Zhou, B. B. Assembly of six [HxAs2Mo6O26](6−x)− cluster-based hybrid materials from 1D chains to 3D framework with multiple Cu–N complexes. CrystEngComm. 2017, 19, 2739–2749.  doi: 10.1039/C7CE00319F

    28. [28]

      Yang, H.; Liu, T.; Cao, M.; Li, H.; Gao, S.; Cao, R. A water-insoluble and visible light induced polyoxometalate-based photocatalyst. Chem. Commun. 2010, 46, 2429–31.  doi: 10.1039/b919868g

    29. [29]

      Hao, H. F.; Zhou, W. Z.; Zang, H. Y.; Tan, H. Q.; Qi, Y. F.; Wang, Y. H.; Li, Y. G. Keggin-type polyoxometalate-based metal-organic networks for photocatalytic dye degradation. Chem. Asian J. 2015, 10, 1676–83.  doi: 10.1002/asia.201500424

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    10. [10]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    11. [11]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    12. [12]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    13. [13]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    14. [14]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    17. [17]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    18. [18]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    19. [19]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(1)
  • Abstract views(322)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return