Citation: Yu-Lin WU, Ning XIE, Xiao-Fang LI, Zhao-Ming FU, Xin-Tao WU, Qi-Long ZHU. MOF-derived Hierarchical Hollow NiRu-C Nanohybrid for Efficient Hydrogen Evolution Reaction[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1346-1356. doi: 10.14102/j.cnki.0254–5861.2011–3153 shu

MOF-derived Hierarchical Hollow NiRu-C Nanohybrid for Efficient Hydrogen Evolution Reaction

  • Corresponding author: Xiao-Fang LI, lixiaofang@fjirsm.ac.cn Zhao-Ming FU, fuzhm1979@163.com Qi-Long ZHU, qlzhu@fjirsm.ac.cn
  • Received Date: 2 February 2021
    Accepted Date: 31 March 2021

    Fund Project: the National Natural Science Foundation of China (NSFC) 21901246the National Natural Science Foundation of China (NSFC) 21905279the Natural Science Foundation of Fujian Province 2020J01116the Natural Science Foundation of Fujian Province 2019J05158

Figures(11)

  • Designing efficient electrocatalysts for efficient hydrogen evolution is extremely desired but challenging. Herein, we report a facile MOF-assisted strategy to synthesize the hierarchical hollow spherical NiRu-C nanohybrid with closely packed rod-like bulges on the surface. Benefited from the more exposed active sites of NiRu-C nanohybrid and the efficient electron/mass transport in its unique hierarchical hollow spherical nanostructure, the optimized nanohybrid showed excellent performance for alkaline hydrogen evolution with ultralow overpotentials, which are much superior to those of Pt/C and the overwhelming majority of reported electrocatalysts. The interpretation of the reaction mechanism was further discussed with DFT calculations. Our research may provide a guidance for the development of advanced electrocatalysts with controlled morphology and excellent performance for future energy applications.
  • 加载中
    1. [1]

      Yang, Y.; Zhang, K.; Lin, H.; Li, X.; Chan, H. C.; Yang, L.; Gao, Q. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357−2366.  doi: 10.1021/acscatal.6b03192

    2. [2]

      Du, N.; Wang, C.; Wang, X.; Lin, Y.; Jiang, J.; Xiong, Y. Trimetallic tristar nanostructures: tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2016, 28, 2077–84.  doi: 10.1002/adma.201504785

    3. [3]

      Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2015, 54, 2131–6.  doi: 10.1002/anie.201410050

    4. [4]

      He, L.; Zhou, D.; Lin, Y.; Ge, R.; Hou, X.; Sun, X.; Zheng, C. Ultrarapid in situ synthesis of Cu2S nanosheet arrays on copper foam with room-temperature-active iodine plasma for efficient and cost-effective oxygen evolution. ACS Catal. 2018, 8, 3859–3864.  doi: 10.1021/acscatal.8b00032

    5. [5]

      Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2014, 126, 6525–8.  doi: 10.1002/ange.201402998

    6. [6]

      Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. 2014, 53, 9577–81.  doi: 10.1002/anie.201403842

    7. [7]

      Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.  doi: 10.1038/ncomms4783

    8. [8]

      Li, L.; Wang, B.; Zhang, G.; Yang, G.; Yang, T.; Yang, S.; Yang, S. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv. Energy Mater. 2020, 10, 2001600–9.  doi: 10.1002/aenm.202001600

    9. [9]

      Zheng, T.; Shang, C.; He, Z.; Wang, X.; Cao, C.; Li, H.; Si, R.; Pan, B.; Zhou, S.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem. Int. Ed. 2019, 58, 14764–14769.  doi: 10.1002/anie.201909369

    10. [10]

      Qin, F.; Zhao, Z.; Alam, M. K.; Ni, Y.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z.; Wang, Z.; Bao, J. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.  doi: 10.1021/acsenergylett.7b01335

    11. [11]

      Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride-based catalysts for electrochemical water-splitting: a review. Adv. Funct. Mater. 2020, 30, 1906481–28.  doi: 10.1002/adfm.201906481

    12. [12]

      Zhang, J.; Zhang, Q.; Feng, X. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167–19.  doi: 10.1002/adma.201808167

    13. [13]

      Han, X.; Tong, X.; Liu, X.; Chen, A.; Wen, X.; Yang, N.; Guo, X. Y. Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal. 2018, 8, 1828–1836.  doi: 10.1021/acscatal.7b03316

    14. [14]

      Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–4961.  doi: 10.1021/acscatal.6b01211

    15. [15]

      Bhalothia, D.; Huang, T. H.; Chang, C. W.; Lin, T. H.; Wu, S. C.; Wang, K. W.; Chen, T. Y. High-performance and stable hydrogen evolution reaction achieved by Pt trimer decoration on ultralow-metal loading bimetallic PtPd nanocatalysts. ACS Appl. Energy Mater. 2020, 3, 11142–11152.  doi: 10.1021/acsaem.0c02084

    16. [16]

      Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–80.  doi: 10.1039/C4CS00448E

    17. [17]

      Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. MOF-derived noble metal free catalysts for electrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 35390–35397.  doi: 10.1021/acsami.6b13411

    18. [18]

      Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116–7.  doi: 10.1002/aenm.201600116

    19. [19]

      Marques Mota, F.; Choi, C. H.; Boppella, R.; Lee, J. E.; Kim, D. H. Arising synergetic and antagonistic effects in the design of Ni- and Ru-based water splitting electrocatalysts. J. Mater. Chem. A 2019, 7, 639–646.  doi: 10.1039/C8TA08535H

    20. [20]

      Zhang, J. Y.; Tian, X.; He, T.; Zaman, S.; Miao, M.; Yan, Y.; Qi, K.; Dong, Z.; Liu, H.; Xia, B. Y. In situ formation of Ni3Se4 nanorod arrays as versatile electrocatalysts for electrochemical oxidation reactions in hybrid water electrolysis. J. Mater. Chem. A 2018, 6, 15653–15658.  doi: 10.1039/C8TA06361C

    21. [21]

      Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775–8.  doi: 10.1002/aenm.201801775

    22. [22]

      Chen, S.; Duan, J.; Vasileff, A.; Qiao, S. Z. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed. 2016, 55, 3804–8.  doi: 10.1002/anie.201600387

    23. [23]

      Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303–35.  doi: 10.1002/adma.201704303

    24. [24]

      Cao, C.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv. Funct. Mater. 2018, 29, 1807418–8.

    25. [25]

      Li, X.; Zhao, S.; Zhang, W.; Liu, Y.; Li, R. Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene. Dalton Trans. 2016, 45, 15595–15602.  doi: 10.1039/C6DT02678H

    26. [26]

      Yang, X.; Zhao, Z.; Yu, X.; Feng, L. Electrochemical hydrogen evolution reaction boosted by constructing Ru nanoparticles assembled as a shell over semimetal Te nanorod surfaces in acid electrolyte. Chem. Commun. 2019, 55, 1490–1493.  doi: 10.1039/C8CC09993F

    27. [27]

      Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T.; Wu, K.; Liu, Z.; Li, B.; Chen, Z.; Tse, J. S.; Lu, S.; Yang, B. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676–8.  doi: 10.1002/adma.201800676

    28. [28]

      Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.  doi: 10.1103/PhysRevB.47.558

    29. [29]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.  doi: 10.1016/0927-0256(96)00008-0

    30. [30]

      Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.  doi: 10.1103/PhysRevB.50.17953

    31. [31]

      Perdew, J. P.; Burke K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    32. [32]

      Bi, R.; Zeng, C.; Huang, H.; Wang, X.; Zhang, L. Metal-organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage. J. Mater. Chem. A 2018, 6, 14077–14082.  doi: 10.1039/C8TA05554H

    33. [33]

      Xu, Y.; Yin, S.; Li, C.; Deng, K.; Xue, H.; Li, X.; Wang, H.; Wang, L. Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1376–1381.  doi: 10.1039/C7TA09939H

    34. [34]

      Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L.; Tang, Z.; Zhang, T.; Lu, S. A general route to fabricate low-ruthenium-based bimetals electrocatalysts for pH-universal hydrogen evolution reaction via carbon quantum dots. Angew. Chem. Int. Ed. 2019, 132, 1735–1743.

    35. [35]

      Wang, J.; Wei, Z.; Mao, S.; Li, H.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy & Environ. Sci. 2018, 11, 800–806.

    36. [36]

      Liu, J.; Ding, G.; Yu, J.; Liu, X.; Zhang, X.; Guo, J.; Zhang, J.; Ren, W.; Che, R. Visualizing spatial potential and charge distribution in Ru/N-doped carbon electrocatalysts for superior hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 18072–18080.  doi: 10.1039/C9TA06206H

    37. [37]

      Lu, B.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P.; Li, N.; Gao, P.; Ping, Y.; Chen, S. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631–11.  doi: 10.1038/s41467-019-08419-3

    38. [38]

      Jiang, P.; Yang, Y.; Shi, R.; Xia, G.; Chen, J.; Su, J.; Chen, Q. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.  doi: 10.1039/C6TA09994G

    39. [39]

      Li, F.; Han, G. F.; Noh, H. J.; Ahmad, I.; Jeon, I. Y.; Baek, J. B. Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 2018, 30, 1803676–7.  doi: 10.1002/adma.201803676

    40. [40]

      Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279–7.  doi: 10.1002/adma.201706279

    41. [41]

      Pu, Z.; Amiinu, I. S.; Kou, Z.; Li, W.; Mu, S. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 2017, 129, 11717–11722.  doi: 10.1002/ange.201704911

    42. [42]

      Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.  doi: 10.1038/nnano.2016.304

  • 加载中
    1. [1]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    2. [2]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    3. [3]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    4. [4]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    11. [11]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    12. [12]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    13. [13]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    14. [14]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    17. [17]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    18. [18]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    19. [19]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    20. [20]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

Metrics
  • PDF Downloads(2)
  • Abstract views(758)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return