Citation: Long ZHAO, Guan-Fan CHEN, Yi-Hang WEN, Xun-Wen XIAO. Halogen-bonded Cocrystal Based on Tetrathiafulvalene Derivatives[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1277-1283. doi: 10.14102/j.cnki.0254–5861.2011–3150 shu

Halogen-bonded Cocrystal Based on Tetrathiafulvalene Derivatives

  • Corresponding author: Guan-Fan CHEN, chenguanfan@126.com Yi-Hang WEN, wyh@zjnu.edu.cn
  • Received Date: 2 February 2021
    Accepted Date: 24 May 2021

    Fund Project: Natural Science Foundation of Zhejiang Province LYY20B020032Ningbo Science and Technology Innovation 2025 2018B10033

Figures(6)

  • In this paper, two cocrystals 1 and 2 with the same chemical composition [L1.L2] (L1 = bis(4΄-pyridyl)-TTF, L2 = 4, 4΄-diiodophenyl) were synthesized by slow diffusion with different solvent systems. Cocrystals 1 and 2 were characterized by single-crystal X-ray and the purity of these two cocrystals was confirmed by PXRD data. The photocurrent responses of these two cocrystals were also tested. Only cocrystal 1 could generate photocurrent signal when exposed to light. From the crystal structure analysis, the possible reason may come from the different biphenyl conformations in L2.
  • 加载中
    1. [1]

      Jimbo, T.; Tsuji, M.; Taniguchi, R.; Sada, K.; Kokado, K. Control of aggregation-induced emission from a tetraphenylethene derivative through the components in the co-crystal. Cryst. Growth Des. 2018, 18, 3863−3869.  doi: 10.1021/acs.cgd.8b00141

    2. [2]

      Chen, S.; Zeng, X. Design of ferroelectric organic molecular crystals with ultrahigh polarization. J. Am. Chem. Soc. 2014, 136, 6428−6436.  doi: 10.1021/ja5017393

    3. [3]

      Sgarbossa, P.; Bertani, R.; Di Noto, V.; Piga, M.; Giffin, G. A.; Terraneo, G.; Pilati, T.; Metrangolo, P.; Resnati, G. Interplay between structural and dielectric features of new low k hybrid organic-​organometallic supramolecular ribbons. Cryst. Growth. Des. 2012, 12, 297−305.  doi: 10.1021/cg201073m

    4. [4]

      Mukherjee, A.; Sanz-Matias, A.; Velpula, G.; Waghray, D.; Ivasenko, O.; Bilbao, N.; Harvey, J.; Mali, K.; De Feyter, S. Halogenated building blocks for 2D crystal engineering on solid surfaces: lessons from hydrogen bonding. Chem. Sci. 2019, 10, 3881−3891.  doi: 10.1039/C8SC04499F

    5. [5]

      Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478−2601.  doi: 10.1021/acs.chemrev.5b00484

    6. [6]

      Robertson, C. C.; Wright, J. S.; Carrington, E. J.; Perutz, R. N.; Hunter, C. A.; Brammer, L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem. Sci. 2017, 8, 5392−5398.  doi: 10.1039/C7SC01801K

    7. [7]

      Zheng, X.; Xiao, N.; Long, Z.; Wang, L.; Ye, F.; Fang, J.; Shen, L.; Xiao, X. Hydrogen bonded-​directed pure organic frameworks based on TTF-​tetrabenzoic acid and bipyridine base. Synth. Met. 2020, 263, 116365−7.  doi: 10.1016/j.synthmet.2020.116365

    8. [8]

      Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; Zhang, D. A Tetrathiafulvalene-​based electroactive covalent organic framework. Chem. Eur. J. 2014, 20, 14614−14618.  doi: 10.1002/chem.201405330

    9. [9]

      Su, J.; Yuan, S.; Wang, T.; Lollar, C. T.; Zuo, J.; Zhang, J.; Zhou, H. Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles. Chem. Sci. 2020, 11, 1918−1925.  doi: 10.1039/C9SC06009J

    10. [10]

      Canevet, D.; Sallé, M.; Zhang, G.; Zhang, D.; Zhu, D. Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. Chem. Commun. 2009, 2245−2269.

    11. [11]

      Sun, J.; Lu, X.; Shao, J.; Li, X.; Zhang, S.; Wang, B.; Zhao, J.; Shao, Y.; Fang, R.; Wang, Z.; Yu, W.; Shao, X. Molecular and crystal structure diversity, and physical properties of tetrathiafulvalene derivatives substituted with various aryl groups through sulfur bridges. Chem. Eur. J. 2013, 19, 12517−12525.  doi: 10.1002/chem.201301819

    12. [12]

      Shen, W.; Xiao, X.; Ye, F.; Wang, M.; Wen, Y. Synthesis, structure and electric property of a 3D supramolecular CoII coordination complex. Chin. J. Struct. Chem. 2018, 37, 1829−1833.

    13. [13]

      Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. J. Am. Chem. Soc. 2012, 134, 12932−12935.  doi: 10.1021/ja3059827

    14. [14]

      Xu, J.; Xiao, X.; Deng, K.; Zeng, Q. Transformation of self-​assembly of a TTF derivative at the 1-​phenyloctane​/HOPG interface studied by STM-​from a nanoporous network to a linear structure. Nanoscale 2016, 8, 1652−1657.  doi: 10.1039/C5NR07345F

    15. [15]

      Wang, H.; Ge, J.; Hua, C.; Jiao, C.; Wu, Y.; Leong, C. F.; D'Alessandro, D. M.; Liu, T.; Zuo, J. Photo- and electronically switchable spin-crossover iron(II) metal-organic frameworks based on a tetrathiafulvalene ligand. Angew. Chem. Int. Ed. 2017, 56, 5465−5470.  doi: 10.1002/anie.201611824

    16. [16]

      Wang, R.; Kang, L.; Xiong, J.; Dou, X.; Chen, X.; Zou, J.; You, X. Structures and physical properties of oligomeric and polymeric metal complexes based on bis(pyridyl)-substituted TTF ligands and an inorganic analogue. Dalton Trans. 2011, 40, 919−926.  doi: 10.1039/C0DT00739K

    17. [17]

      Xu, J.; Li, Y.; Wang, L.; Zhu, X.; Xiao, X.; Geng, Y.; Ke, D.; Zeng, Q. Hydrogen bonding networks controllable by the substitution position of tetrathiafulvalene on the pyridine ring. Chin. Chem. Lett. 2019, 30, 767−770.  doi: 10.1016/j.cclet.2018.09.019

    18. [18]

      CrysAlisPro. Rigaku Oxford Diffraction 2015.

    19. [19]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339−341.  doi: 10.1107/S0021889808042726

    20. [20]

      Sheldrick, G. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3−8.

    21. [21]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112−122.

    22. [22]

      Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441−451.  doi: 10.1021/j100785a001

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(1)
  • Abstract views(278)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return