Citation: Chen-Hao OU YANG, Zi-Juan WEI, Liang HE, Yu-Jun GUO, Ming-Bu LUO, Qi-Pu LIN. Syntheses and Structures of Two Zn-Pyrazole/carboxyl Coordination Frameworks[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1265-1270. doi: 10.14102/j.cnki.0254–5861.2011–3149 shu

Syntheses and Structures of Two Zn-Pyrazole/carboxyl Coordination Frameworks

  • Corresponding author: Qi-Pu LIN, linqipu@fjirsm.ac.cn
  • Received Date: 22 February 2021
    Accepted Date: 7 July 2021

    Fund Project: the National Natural Science Foundation of China 21501028the National Natural Science Foundation of Fujian Province 2017J01039

Figures(6)

  • Two pyrazole-based zinc(II) metal-organic frameworks, [(Zn4(PDC)2(BDC)(H2O)2]n (compound 1, PDC = 1H-pyrazole-3, 5-dicarboxylic acid, BDC = benzene-1, 4, -dicarboxylic acid) and [(Zn3(PDC)2(BPY)3(H2O)2]n (compound 2, BPY = 4, 4-bipyridine), were synthesized and characterized by X-ray diffraction, elemental analysis, thermogravimetric analysis, infrared and fluorescence spectroscopy. Compound 1 crystallizes in space group Pna21 with a = 14.325(3), b = 10.004(2), c = 16.454(3) Å, V = 2357.8(8) Å3, Z = 4, Mr = 821.83, Dc = 2.298 g·cm-3, F(000) = 1608, GOOF = 1.163, the final R = 0.0218 and wR = 0.0686 for 5150 observed reflections with I > 2σ(I). Compound 2 crystallizes in monoclinic space group C2/c with a = 17.034(2), b = 11.6313(9), c = 11.7608(13) Å, V = 2034.9(4) Å3, Z = 2, Mr = 1006.91, Dc = 1.643 g·cm-3, F(000) = 1020, GOOF = 1.084, the final R = 0.0320 and wR = 0.0768 for 2435 observed reflections with I > 2σ(I).
  • 加载中
    1. [1]

      MacGillivray, L. R. Metal organic frameworks: design and applications. John Wiley & Sons, 2010; Farrusseng, D. Metal organic frameworks: applications from catalysis to gas storage. Wiley-VCH: New York 2011.

    2. [2]

      Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103.  doi: 10.1016/j.ccr.2017.09.027

    3. [3]

      Liu, S. Y.; Qi, X. L.; Lin, R. B.; Cheng, X. N.; Liao, P. Q.; Zhang, J. P.; Chen, X. M. Photoluminescence: porous Cu(I) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygen (Adv. Funct. Mater. 37/2014). Adv. Funct. Mater. 2014, 24, 5928–5928.  doi: 10.1002/adfm.201470249

    4. [4]

      Yang, J. M.; Liu, Q.; Sun, W. Y. Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals. Micropor. Mesopor. Mat. 2014, 190, 26–31.  doi: 10.1016/j.micromeso.2014.01.020

    5. [5]

      Pintado-Sierra, M.; Rasero-Almansa, A. M.; Corma, A.; Lglesias, M.; Sanchez, F. Bifunctional iridium-(2-aminoterephthalate)-Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. J. Catal. 2013, 299, 137–145.  doi: 10.1016/j.jcat.2012.12.004

    6. [6]

      Wu, L. M.; Chen, K. Q.; Huang, W. C.; Lin, Z. T.; Zhao, J. L.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Xiao, Q. N.; Guo, Z. N.; Xiang, Y. J.; Li, J. Q.; Bao, Q. L.; Zhang, H. Perovskite CsPbX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 2018, 6, 1800400.  doi: 10.1002/adom.201800400

    7. [7]

      Zhang, C. D.; Liu, S. X.; Gao, B.; Sun, C. Y.; Xie, L. H.; Yu, M.; Peng, J. Hybrid materials based on metal-organic coordination complexes and cage-like polyoxovanadate clusters: synthesis, characterization and magnetic properties. Polyhedron 2007, 26, 1514–1522.  doi: 10.1016/j.poly.2006.11.050

    8. [8]

      Lu, G.; Hupp, J. T. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J. Am Chem. Soc. 2010, 132, 7832–7833.  doi: 10.1021/ja101415b

    9. [9]

      Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.  doi: 10.1038/nmat2608

    10. [10]

      Xia, J.; Zhao, B.; Wang, H. S.; Shi, W.; Ma, Y.; Song, H. B.; Cheng, P.; Liao, D. Z.; Yan, S. P. Two- and three-dimensional lanthanide complexes: synthesis, crystal structures, and properties. Inorg. Chem. 2007, 46, 3450–3458; Pan, L.; Huang, X. Y.; Li, J. Assembly of new coordination frameworks in a pH-controlled medium: syntheses, structures, and properties of [Cd(Hpdc)(H2O)] and [Cd3(pdc)2(H2O)2]. J. Solid State Chem. 2000, 152, 236–246; Pan, L.; Ching, N.; Huang, X. Y.; Li, J. A reversible structural interconversion involving [M(H2pdc)2(H2O)2]2H2O (M = Mn, Fe, Co, Ni, Zn, H3pdc = 3, 5-pyrazoledicarboxylic acid) and the role of a reactive intermediate [Co(H2pdc)2]. Chem. -Eur. J. 2001, 7, 4431–4437; Pan, L.; Frydel, T.; Sander, M. B.; Huang, X. Y.; Li, J. The effect of pH on the dimensionality of coordination polymers. Inorg. Chem. 2001, 40, 1271–1283; Driessen, W. L.; Chang, L.; Finazzo, C.; Gorter, S.; Rehorst, D.; Reedijk, J.; Lutz, M.; Spek, A. L. Two pyrazolato-bridged, linear trinuclear Cu(II) complexes. Crystal structures and magnetic properties. Inorg. Chim. Acta 2003, 350, 25–31.

    11. [11]

      Pan, L.; Frydel, T.; Sander, M. B.; Huang, X. Y.; Li, J. The effect of pH on the dimensionality of coordination polymers. Inorg. Chem. 2001, 40, 1271–1283.  doi: 10.1021/ic001012o

    12. [12]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8.

    13. [13]

      He, L.; Nath, J. K.; Chen, E. X.; Lai, H. D.; Huang, S. L.; Lin, Q. P. Dual-cubic-cage based lanthanide sulfate-carboxylpyrazolate frameworks with high hydrolytic stability and remarkable proton conduction. Chem. Commun. 2019, 55, 2497–2500.  doi: 10.1039/C8CC09474H

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    6. [6]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    10. [10]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    15. [15]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    16. [16]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    17. [17]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    18. [18]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    19. [19]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(1)
  • Abstract views(363)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return