Citation: Jing-Xian JIA, Yu PANG, Jing YANG, Min-Xian LI, Xiang-Jun MENG, Xiao-Zhen GAO, Li-Hua LIU, Meng-Na LIU. Theoretical Study on the Nitrogen-rich Derivatives Based on 1, 2, 4-Triazole and 1, 2, 3-Triazole Rings: an Extended Family of Power Performance Energetic Materials[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1113-1121. doi: 10.14102/j.cnki.0254–5861.2011–3143 shu

Theoretical Study on the Nitrogen-rich Derivatives Based on 1, 2, 4-Triazole and 1, 2, 3-Triazole Rings: an Extended Family of Power Performance Energetic Materials

  • Corresponding author: Jing YANG, yjlzddove@gmail.com
  • Received Date: 17 February 2021
    Accepted Date: 6 May 2021

    Fund Project: the Foundation Project of Tangshan Normal University 2021B37the Foundation Project of Tangshan Normal University 2021B32the School Fund of Shanxi Institute of Technology 2019004the Fund of Shanxi Provincial Education Department 2019L0986

Figures(1)

  • The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1, 2, 4-triazol-3-yl)-2H-1, 2, 3-triazolate (named A~J) are explored employing density functional theory (DFT) calculations at the B3LYP/6-311G** level of theory. Based on the optimized molecular structures, the heats of formation (HOF) are obtained, and the electronic properties, density and molecular sensitivity by characteristic heights (H50) are discussed. Besides, the detonation performances (detonation velocity, detonation pressure) are estimated via Kamlet-Jacobs (K-J) formula. Compounds B (H50 = 29.4 cm, ρ = 1.91 g/cm3, Q = 1563.04 cal/g, P = 36.05 GPa, D = 8.95 km/s) and H (H50 = 31.9 cm, ρ = 1.80 g/cm3, Q = 1610.09 cal/g, P = 37.31 GPa, D = 9.12 km/s) have positive HOFs and remarkable insensitivity and good detonation performance, strongly suggesting them as the acceptable new-type explosive. The initiating power surpasses conventional primary explosives, such as HMX. The outstanding detonation power of compounds B and H contributes to its future prospects as a promising green primary explosive.
  • 加载中
    1. [1]

      Kumar, M. A.; Ashutosh, P.; Vargeese, A. A. Decomposition mechanism of hexanitrohexaazaisowurtzitane (CL-20) by coupled computational and experimental study. J. Phys. Chem. A 2019, 123, 4014–40203.  doi: 10.1021/acs.jpca.9b01197

    2. [2]

      Zhang, J. C.; Zhu, Z. Y.; Zhou, M. Q.; Zhang J. H.; Hooper, J. P.; Shreeve, J. M. Superior high-energy-density biocidal agent achieved with a 3D metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 40541−40547.  doi: 10.1021/acsami.0c12251

    3. [3]

      Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Eng. Data 2012, 57, 2442−2455.  doi: 10.1021/je300407g

    4. [4]

      Park, A.; Jeong, Y.; Lee, T. K.; Park, M. W.; Lim, H. Y.; Sung, J.; Cho, J.; Kwak, S. K.; Hong, S. Y.; Choi, N. S. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun. 2021, 12, 838−850.  doi: 10.1038/s41467-021-21106-6

    5. [5]

      Zhang, W. Q.; Zhang, J. H.; Deng, M. C.; Qi, X. J.; Nie, F. D.; Zhang, Q. H. A promising high-energy-density material. Nat. Commun. 2017, 8, 181−187.  doi: 10.1038/s41467-017-00286-0

    6. [6]

      Liu, Z.; Lu, T.; Xue, F.; Nie, H. C.; Ray, W.; Andrew, S.; Felipe, K.; Narendirakumar, N.; Dong, X. L.; Yu, D. H.; Chen, L. Q.; Liu, Y.; Wang, G. S. Lead-free (Ag, K)NbO3 materials for high-performance explosive energy conversion. Sci Adv. 2020, 6, eaba0367−eaba0377.  doi: 10.1126/sciadv.aba0367

    7. [7]

      Tang, Y. X.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Aminonitro groups surrounding a fused pyrazolotriazine ring: a superior thermally stable and insensitive energetic material. ACS Appl. Energy Mater. 2019, 2, 2263–2267.  doi: 10.1021/acsaem.9b00049

    8. [8]

      Chang, J. J.; Zhao, G.; Zhao, X. Y.; He, C. L.; Pang, A. P.; Shreeve, J. M. New promises from an old friend: iodine-rich compounds as prospective energetic biocidal agents. Acc. Chem. Res. 2021, 54, 332–343.  doi: 10.1021/acs.accounts.0c00623

    9. [9]

      Ma, J. C.; Zhang, J. H.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Gem-dinitromethyl-functionalized 5-amino-1, 3, 4-oxadiazolate derivatives: alternate route, characterization, and property analysis. Org. Lett. 2020, 22, 4771–4775.  doi: 10.1021/acs.orglett.0c01569

    10. [10]

      Ma, J. C.; Tang, Y. X.; Cheng, G. B.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Energetic derivatives of 8-nitropyrazolo[1, 5-a][1, 3, 5]triazine-2, 4, 7-triamine: achieving balanced explosives by fusing pyrazole with triazine. Org. Lett. 2020, 22, 1321–1325.  doi: 10.1021/acs.orglett.9b04642

    11. [11]

      Xu, H. J.; Peng, L. J.; Wang, J. B.; Ren, H. S.; Zhu, Q.; Li, X. Y. Relationship between energetic performance and clustering effects on incremental nitramine groups: a theoretical perspective. J. Phys. Chem. A 2019, 123, 742–749.  doi: 10.1021/acs.jpca.8b10647

    12. [12]

      Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589–607.  doi: 10.1016/j.jhazmat.2008.04.011

    13. [13]

      Witkowski, T. G.; Sebastiao, E.; Gabidullin, B.; Hu, A.; Zhang, F.; Murugesu, M. 2, 3, 5, 6-tetra(1H-tetrazol-5-yl)pyrazine: a thermally stable nitrogen-rich energetic material. ACS Appl. Energy Mater. 2018, 1, 589–593.  doi: 10.1021/acsaem.7b00138

    14. [14]

      Zhai, L. J.; Bi, F. Q.; Zhang, J. R.; Li, X. Z.; Wang, B. Z.; Chen, S. P. 3, 4-Bis(3-tetrazolylfuroxan-4-yl)furoxan: a linear C–C bonded pentaheterocyclic energetic material with high heat of formation and superior performance. ACS Omega 2020, 5, 11115–11122.  doi: 10.1021/acsomega.0c01048

    15. [15]

      Dong, Z.; Ye, Z. W. Synthesis and properties of salts derived from C4N182-, C4N18H3- and C4N18H3- anions. J. Mater. Chem. A 2020, 8, 25035–25039.  doi: 10.1039/D0TA08153A

    16. [16]

      Bagdi, P. R.; Basha, R. S.; Baruah, P. K.; Khan, A. T. Copper oxide nanoparticle mediated 'click chemistry' for the synthesis of mono-, bis- and tris-triazole derivatives from 10, 10-dipropargyl-9-anthrone as a key building block. RSC Adv. 2014, 4, 10652–10659.  doi: 10.1039/c3ra44869j

    17. [17]

      Nahle, A.; Salim, R.; Hajjaji, F. E.; Aouad, M. R.; Messali, M.; Ech-chihbi, E.; Hammouti, B.; Taleb, M. Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental & theoretical approach. RSC Adv. 2021, 11, 4147–4162.  doi: 10.1039/D0RA09679B

    18. [18]

      Sharma, J.; Ahmad, S.; Alam, M. S. Bioactive triazoles: a potential review. J. Chem. Pharm. Res. 2012, 4, 5157−5164.

    19. [19]

      Xu, Z.; Cheng, G. B.; Zhu, S. G.; Lin, Q. H.; Yang, H. W. Nitrogen-rich salts based on the combination of 1, 2, 4-triazole and 1, 2, 3-triazole rings: a facile strategy for fine tuning energetic properties. J. Mater. Chem. A 2018, 6, 2239–2248.  doi: 10.1039/C7TA08941D

    20. [20]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B. G.; Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT 2009.

    21. [21]

      Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. H.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. Environ. Sci. Technol. 2015, 49, 4209–4217.  doi: 10.1021/es505111r

    22. [22]

      Qu, R. J.; Xu, B. Z.; Meng, L. J.; Wang, L. S.; Wang, Z. Y. Ozonation of indigo enhanced by carboxylated carbon nanotubes: performance optimization, degradation products, catalytic mechanism and toxicity evaluation. Water Res. 2015, 68, 316–327.  doi: 10.1016/j.watres.2014.10.017

    23. [23]

      Hehre, W. J.; Ditchfield, D.; Radom, L.; Pople, J. A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796–4801.  doi: 10.1021/ja00719a006

    24. [24]

      Zhang, J. C.; Zhang, J. H.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Sodium and potassium 3, 5-dinitro-4-hydropyrazolate: three dimensional metal-organic frameworks as promising super-heatresistant explosives. ACS Appl. Energy Mater. 2019, 2, 7628–7634.  doi: 10.1021/acsaem.9b01608

    25. [25]

      Zhao, G.; He, C. L.; Yin, P.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Efficient construction of energetic materials via nonmetallic catalytic carbon-carbon cleavage/oxime-release-coupling reactions. J. Am. Chem. Soc. 2018, 140, 3560–3563.  doi: 10.1021/jacs.8b01260

    26. [26]

      He, P.; Zhang, J. G.; Wang, K.; Yin, X.; Jin, X.; Zhang, T. L. Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1, 4-dinitramino-tetrazole and 1, 1΄-dinitro-4, 4΄-diamino-5, 5΄-bitetrazole as energetic compounds. Phys. Chem. Chem. Phys. 2015, 17, 5840–5848.  doi: 10.1039/C4CP04883K

    27. [27]

      Jin, X. H.; Hu, B. C.; Lu, W.; Gao, S. J.; Liu, Z. L.; Lv, C. X. Theoretical study on a novel high-energy density material 4, 6, 10, 12-tetranitro-5, 11-bis(nitroimino)-2, 8-dioxa-4, 6, 10, 12 -tetraaza-tricyclo[7, 3, 0, 03, 7] dodecane. RSC Adv. 2014, 4, 6471–6477.  doi: 10.1039/c3ra46107f

    28. [28]

      Politzer, P.; Lane, P.; Murray, J. S. Computational characterization of a potential energetic compound: 1, 3, 5, 7-tetranitro-2, 4, 6, 8-tetraazacubane. Cent. Eur. J. Energ. Mater. 2011, 8, 39–52.

    29. [29]

      Rice, B. M.; Pai, S. V.; Hare, J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame. 1999, 118, 445–458.  doi: 10.1016/S0010-2180(99)00008-5

    30. [30]

      Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23–35.  doi: 10.1063/1.1667908

    31. [31]

      Politzer, P.; Murray, J. S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142.  doi: 10.1007/s00214-002-0363-9

    32. [32]

      Pospíšil, M.; Vávra, P.; Concha, M. C.; Murray, J. S.; Politzer, P. A possible crystal volume factor in the impact sensitivities of some energetic compounds. J. Mol. Model. 2010, 16, 895–901.  doi: 10.1007/s00894-009-0587-x

    33. [33]

      Zhang, C.; Shu, Y.; Huang, Y.; Zhao, X.; Dong, H. Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J. Phys. Chem. B 2005, 109, 8978–8982.  doi: 10.1021/jp0512309

    34. [34]

      Li, B. T.; Li, L. L.; He, J. X. Looking for high energy density molecules in the nitro-substituted derivatives of pyridazine. Chin. J. Struct. Chem. 2020, 39, 849–854.

    35. [35]

      Li, Y.; Evans, J. N. S. The Fukui function: a key concept linking frontier molecular orbital theory and the hard-soft-acid-base principle. J. Am. Chem. Soc. 1995, 117, 7756–7759.  doi: 10.1021/ja00134a021

    36. [36]

      Ess, D. H.; Houk, K. N. Theory of 1, 3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J. Am. Chem. Soc. 2008, 130, 10187–10198.  doi: 10.1021/ja800009z

    37. [37]

      Guo, C.; Zhang, H.; Wang, X.; Liu, X.; Sun, J. Study on a novel energetic cocrystal of TNT/TNB. J. Mater. Sci. 2013, 48, 1351–135.  doi: 10.1007/s10853-012-6881-5

    38. [38]

      Gutowski, K. E.; Rogers, R. D.; Dixon, D. A. Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1, 2, 4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J. Phys. Chem. B 2007, 109, 4788–4800.

    39. [39]

      Boddu, V. M.; Viswanath, D. S.; Ghosh, T. K.; Damavarapu, R. 2, 4, 6-Triamino-1, 3, 5-trinitrobenzene (TATB) and TATB-based formulations - a review. J. Hazard. Mater. 2010, 181, 1−8.  doi: 10.1016/j.jhazmat.2010.04.120

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    11. [11]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    12. [12]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    13. [13]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    14. [14]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    15. [15]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    16. [16]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    17. [17]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    18. [18]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    19. [19]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    20. [20]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

Metrics
  • PDF Downloads(2)
  • Abstract views(357)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return