Citation: Zhong-Xuan XU, Bang-Ping HU, Li-Feng LI, Shi-Fei XU. Homochiral Coordination Polymers from Single Helices to Multiple Helices Controlled by Metal Ions[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1131-1137. doi: 10.14102/j.cnki.0254–5861.2011–3139 shu

Homochiral Coordination Polymers from Single Helices to Multiple Helices Controlled by Metal Ions

  • Corresponding author: Zhong-Xuan XU, xuzhongxuan4201@163.com
  • Received Date: 22 February 2021
    Accepted Date: 21 May 2021

    Fund Project: the National Natural Science Foundation of China 21761036

Figures(7)

  • Helix as essential molecular chiral phenomenon at supramolecular level offers an affective method to study chiral characteristic of homochiral coordination polymers (CPs). Herein, two homochiral CPs [Cd((R)-CBA)2(3, 5-DIT)]n ((R)-H2CBA = (R)-4-(1-carboxyethoxy) benzoic acid, 3, 5-DIT = 3, 5-di(1H-imidazol-1-yl)toluene, 1-R) and [Zn((R)-CBA)(3, 5-DIT)]n (2-R) were synthesized under hydrothermal conditions. In complex 1-R, only a helical chain was built by chiral ligands (R)-CBA2-, ancillary ligands 3, 5-DIT and Cd(Ⅱ) ions. After Cd(Ⅱ) ions were replaced by Zn(Ⅱ) ions under similar reaction system, Zn(Ⅱ), (R)-CBA2- and/or 3, 5-DIT formed six types of helices, resulting in complex 2-R. So, the metal ions played a key role in the construction of helical structures. Complexes 1-R and 2-R were also characterized by elemental analysis, PXRD, TGA, CD and UV-visible absorptions. In addition, complexes 1-R and 2-R exhibited different photoluminescence behaviors in solid sate compared to free ligand (R)-H2CBA.
  • 加载中
    1. [1]

      Baumgartner, R.; Fu, H.; Song, Z.; Yao, L.; Cheng, J. Cooperative polymerization of α-helices induced by macromolecular architecture. Nat. Chem. 2017, 9, 614−622.  doi: 10.1038/nchem.2712

    2. [2]

      Arrata, I.; Barnard, A.; Tomlinson, D. C.; Wilson, A. J. Interfacing native and non-native peptides: using affimers to recognize α-helix mimicking foldamers. Chem. Commun. 2017, 53, 2834−2837.  doi: 10.1039/C6CC09395G

    3. [3]

      Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953, 171, 737−738.  doi: 10.1038/171737a0

    4. [4]

      Frankling, R. E.; Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740−741.  doi: 10.1038/171740a0

    5. [5]

      Wilkins, G. DNA: twin strands solved the structure. Nature 2013, 496, 434−434.

    6. [6]

      Bhattacharyya, A.; Ghosh, B. N.; Herrero, S.; Rissanen, K.; Jiménez-Aparicio, R.; Chattopadhyay, S. Formation of a novel ferromagnetic end-to-end cyanate bridged homochiral helical copper(II) Schiff base complex via spontaneous symmetry breaking. Dalton Trans. 2015, 44, 493−497.  doi: 10.1039/C4DT03166K

    7. [7]

      Bisht, K. K.; Parmar, B.; Rachuri, Y.; Kathalikattil, A. C.; Suresh, E. Progress in the synthetic and functional aspects of chiral metal-organic frameworks. CrystEngComm. 2015, 17, 5341−5356.  doi: 10.1039/C5CE00776C

    8. [8]

      Li, C.; Zhou, H.; Sun Y.; Guo, J.; Du, M. Controlled crystal transformations of a chiral conglomerate with heterotactic helical coordination arrays. Cryst. Growth Des. 2018, 18, 4252−4256.  doi: 10.1021/acs.cgd.8b00617

    9. [9]

      Wu, X.; Zhang, H.; Xu, Z.; Zhang, J. Asymmetric induction in homochiral MOFs: from interweaving double helices to single helices. Chem. Commun. 2015, 51, 16331−16333.  doi: 10.1039/C5CC06501A

    10. [10]

      Chang, C.; Qi, X.; Zhang, J.; Qiu, Y.; Li, X.; Wang, X.; Bai, Y.; Sun, J.; Liu, H. Facile synthesis of magnetic homochiral metal-organic frameworks for "enantioselective fishing". Chem. Commun. 2015, 51, 3566−3569.  doi: 10.1039/C4CC09988E

    11. [11]

      Zhang, J.; Li, Z.; Gong, W.; Hang, X.; Liu, Y.; Cui, Y. Chiral DHIP-based metal-organic frameworks for enantioselective recognition and separation. Inorg. Chem. 2016, 55, 7229−7232.  doi: 10.1021/acs.inorgchem.6b00894

    12. [12]

      Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Cui, Y. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 2017, 139, 8259−8266.  doi: 10.1021/jacs.7b03113

    13. [13]

      Hou, X.; Xu, T.; Wang, Y.; Liu, S.; Chu, R.; Zhang, J.; Liu, B. Conductive and chiral polymer-modified metal-organic framework for enantioselective adsorption and sensing. ACS Appl. Mater. Interfaces 2018, 10, 26365−26371.  doi: 10.1021/acsami.8b06540

    14. [14]

      Li, Y.; Wang, X.; Li, S.; Sun, H.; Jiang, Y.; Hu, M.; Zhai, Q. The power of heterometalation through lithium for helix chain-based noncentrosymmetric metal-organic frameworks with tunable second-harmonic generation effects. Cryst. Growth Des. 2017, 17, 5634−5639.  doi: 10.1021/acs.cgd.7b01320

    15. [15]

      Xu, Y.; Li, X.; Wang, H.; Liu, H.; Chen, M.; Dou, Q. Synthesis, crystal structure and luminescence of one-dimensional homochiral terbium(III) coordination polymers. Chin. J. Struct. Chem. 2020, 39, 1044−1050.

    16. [16]

      Wang, N.; Fu, H.; Xie, T.; Shi, F.; Wang, T.; Yan, L.; Li, F. A zeolitic rho-type chiral metal-organic framework based on L-alanine. Chin. J. Struct. Chem. 2019, 38, 963−969.

    17. [17]

      Liu, Q.; Xiong, W.; Liu, C.; Wang, Y.; Wei, J.; Xiahou, Z.; Xiong, L. Chiral induction in the ionothermal synthesis of a 3D chiral heterometallic metal-organic framework constructed from achiral 1, 4-naphthalenedicarboxylate. Inorg. Chem. 2013, 52, 6773−6775.  doi: 10.1021/ic400853r

    18. [18]

      Yan, L.; We, C. Recent advances on porous homochiral coordination polymers containing amino acid synthons. CrystEngComm. 2014, 16, 4907−4918.  doi: 10.1039/C3CE42508H

    19. [19]

      Chen, L.; Kang, J.; Cui, H.; Wang, Y.; Liu, L.; Zhang, L.; Su, C. Homochiral coordination cages assembled from dinuclear paddlewheel nodes and enantiopure ditopic ligands: syntheses, structures and catalysis. Dalton Trans. 2015, 44, 12180−12188.  doi: 10.1039/C4DT03782K

    20. [20]

      Xu, Z.; Ma, Y. A pair of 3D homochiral coordination polymers with open channels constructed by lactic acid derivative ligands and in-situ formed anions. Chin. J. Struct. Chem. 2017, 36, 671−678.

    21. [21]

      Xu, Z.; Bai, X.; Men, Q. Two 3D Pillar-layered homochiral coordination complexes: syntheses, structures and properties. Chin. J. Inorg. Chem. 2020, 36, 165−172.

    22. [22]

      Li, M.; Chang, X.; Zeng, Y.; Song, H. Two concomitant polymorphs of homochiral Cu(Ⅱ) coordination compounds based on N-phthalyl-L-alanine: syntheses and crystal structures. Chin. J. Inorg. Chem. 2018, 34, 83−91.

    23. [23]

      Xu, Z.; Ma, Y.; Zhang, L. A couple of Co(II) enantiomers constructed from semirigid lactic acid derivatives. Inorg. Chem. Commun. 2016, 73, 115−118.  doi: 10.1016/j.inoche.2016.10.013

    24. [24]

      Xu, Z.; Bai, X.; Li, L.; Xu, S. Semi-conductive chiral Co−CPs with helixes based on lactic acid derivatives: synthesis, structures and photocatalyic properties. J. Solid State Chem. 2020, 289, 121524-7.  doi: 10.1016/j.jssc.2020.121524

    25. [25]

      Xu, Z.; Shi, M. Two pairs of homochiral coordination polymers with helixes formed from lactic acid derivatives and rigid auxiliary ligands: syntheses, structures and properties. Chin. J. Inorg. Chem. 2019, 35, 2346−2354.

    26. [26]

      Sheldric, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, C71, 3−8.

    27. [27]

      Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. Underlying nets in three-periodic coordination polymers: topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. CrystEngComm. 2011, 13, 3947−3958.

  • 加载中
    1. [1]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    2. [2]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    3. [3]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    4. [4]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    11. [11]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    12. [12]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    15. [15]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    16. [16]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    19. [19]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    20. [20]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

Metrics
  • PDF Downloads(1)
  • Abstract views(293)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return