Citation: Wen-Fa CHEN, Bin-Wen LIU, Xiao-Ming JIANG, Guo-Cong GUO. Synthesis, Crystal Structure and Fluorescent Properties of New Layered Thiophosphate Cs2Ga3PS8[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1271-1276. doi: 10.14102/j.cnki.0254–5861.2011–3135 shu

Synthesis, Crystal Structure and Fluorescent Properties of New Layered Thiophosphate Cs2Ga3PS8

  • Corresponding author: Xiao-Ming JIANG, xmjiang@fjirsm.ac.cn Guo-Cong GUO, gcguo@fjirsm.ac.cn
  • Received Date: 5 February 2021
    Accepted Date: 2 April 2021

    Fund Project: the NSF of China 21827813the NSF of China 21921001the NSF of China 22075283Scientific Research Fund of Natural Science Foundation of Fujian Province 2020J01115the Youth Innovation Promotion Association of CAS 20200303

Figures(5)

  • A new quaternary metal thiophosphate, Cs2Ga3PS8, in triclinic P\begin{document}$ \overline 1 $\end{document} space group has been successfully synthesized by a reactive-flux method. Its structural framework is derived from well-known AMIIIMIVQ4 (A = alkali metal; MIII = Al, Ga, In; MIV = Si, Ge, Sn; Q = S, Se) system and composed of two-dimensional 2 ∞[Ga3PS8]2– layers separated by Cs+. The compound exhibits a wide band gap of 3.08 eV and congruent-melting behavior with melt point of 645 ℃. Interestingly, Cs2Ga3PS8 exhibits a broad photoluminescent emission band at 420 nm upon excitation at 295 nm. Moreover, electronic structure calculations indicate that Cs2Ga3PS8 is a direct band gap compound and its luminescent process can be mainly ascribed to electron transfer from the S-3p and Ga-4p states to S-3p and P-3p.
  • 加载中
    1. [1]

      Liu, B. W.; Jiang, X. M.; Zeng, H. Y.; Guo, G. C. [ABa2Cl][Ga4S8] (A = Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering. J. Am. Chem. Soc. 2020, 142, 10641−10645.  doi: 10.1021/jacs.0c04738

    2. [2]

      Deckoff-Jones, S.; Wang, Y. X.; Lin, H. T.; Wu, W. Z.; Hu, J. J. Tellurene: a multifunctional material for midinfrared optoelectronics. ACS Photonics 2019, 6, 1632−1638.  doi: 10.1021/acsphotonics.9b00694

    3. [3]

      Jia, H. H.; Sun, Y. L.; Zhang, Z. R.; Peng, L. F.; An, T.; Xie, J. Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors. Energy Storage Mater. 2019, 23, 508−513.  doi: 10.1016/j.ensm.2019.04.011

    4. [4]

      Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225−6331.  doi: 10.1021/acs.chemrev.6b00558

    5. [5]

      Liu, B. W.; Jiang, X. M.; Li, B. X.; Zeng, H. Y.; Guo, G. C. Li[LiCs2Cl][Ga3S6]: a nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance. Angew. Chem. -Int. Edit. 2019, 59, 4856−4859.

    6. [6]

      Ye, R.; Liu, B. W.; Jiang, X. M.; Lu, J.; Zeng, H. Y.; Guo, G. C. AMnAs3S6 (A = Cs, Rb): phase-matchable infrared nonlinear optical functional motif [As3S6](3-) obtained via surfactant-thermal method. ACS Appl. Mater. Interfaces 2020, 12, 53950−53956.  doi: 10.1021/acsami.0c15812

    7. [7]

      Yang, L. Q.; Ye, R.; Jiang, X. M.; Liu, B. W.; Zeng, H. Y.; Guo, G. C. Ba13In12Zn7S38 and Ba12In12Zn8Se38: infrared nonlinear optical chalcogenides designed by zinc-induced non-centrosymmetry transformation. J. Mater. Chem. C 2020, 8, 3688−3693.  doi: 10.1039/C9TC06999B

    8. [8]

      Liu, B. W.; Zeng, H. Y.; Jiang, X. M.; Guo, G. C. Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2][Ga5S10] (A = K, Rb, and Cs). CCS Chem. 2020, 2, 964−973.

    9. [9]

      Wu, K.; Yang, Y.; Gao, L. A review on phase transition and structure-performance relationship of second-order nonlinear optical polymorphs. Coord. Chem. Rev. 2020, 418.

    10. [10]

      Li, Z.; Zhang, S.; Huang, Z.; Zhao, L. D.; Uykur, E.; Xing, W.; Lin, Z.; Yao, J.; Wu, Y. Molecular construction from AgGaS2 to CuZnPS4: defect-induced second harmonic generation enhancement and cosubstitution-driven band gap enlargement. Chem. Mater. 2020, 32, 3288−3296.  doi: 10.1021/acs.chemmater.0c00609

    11. [11]

      Kutahyali Aslani, C.; Breton, L. S.; Klepov, V. V.; Zur Loye, H. C. A series of Rb4Ln2(P2S6)(PS4)2 (Ln = La, Ce, Pr, Nd, Sm, Gd) rare earth thiophosphates with two distinct thiophosphate units PVS43- and PIV2S64. Dalton Trans. 2021, 50, 1683−1689.  doi: 10.1039/D0DT03718D

    12. [12]

      Rao, R. P.; Chen, H. M.; Adams, S. Stable lithium ion conducting thiophosphate solid electrolytes Li-x(PS4) yX-z (X = Cl, Br, I). Chem. Mater. 2019, 31, 8649−8662.  doi: 10.1021/acs.chemmater.9b01926

    13. [13]

      Oh, D. Y.; Ha, A. R.; Lee, J. E.; Jung, S. H.; Jeong, G.; Cho, W.; Kim, K. S.; Jung, Y. S. Wet-chemical tuning of Li3-xPS4 (0≤x≤0.3) enabled by dual solvents for all-solid-state lithium-ion batteries. ChemSusChem. 2020, 13, 146−151.  doi: 10.1002/cssc.201901850

    14. [14]

      Schlem, R.; Till, P.; Weiss, M.; Krauskopf, T.; Culver, S. P.; Zeier, W. G. Ionic conductivity of the NASICON-related thiophosphate Na1+xTi2-xGax(PS4)3. Chem. Eur. J. 2019, 25, 4143−4148.  doi: 10.1002/chem.201805569

    15. [15]

      Zhu, Z. Y.; Chu, I. H.; Ong, S. P. Li3Y(PS4)2 and Li5PS4Cl2: new lithium superionic conductors predicted from silver thiophosphates using efficiently tiered ab initio molecular dynamics simulations. Chem. Mater. 2017, 29, 2474−2484.  doi: 10.1021/acs.chemmater.6b04049

    16. [16]

      Francisco, R. H. P.; Tepe, T.; Eckert, H. A study of the system Li–P–Se. J. Solid State Chem. 1993, 107, 452−459.  doi: 10.1006/jssc.1993.1369

    17. [17]

      Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Chemistry in molten alkali metal polyselenophosphate fluxes. Influence of flux composition on dimensionality. Layers and chains in APbPSe4, A4Pb(PSe4)2 (A = Rb, Cs), and K4Eu(PSe4)2. Inorg. Chem. 1996, 35, 840−844.  doi: 10.1021/ic950479+

    18. [18]

      Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. Helical polymer (1)/(infinity) P2Se62-: strong second harmonic generation response and phase-change properties of its K and Rb salts. J. Am. Chem. Soc. 2007, 129, 14996−15006.  doi: 10.1021/ja075096c

    19. [19]

      Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. 1/(infinity) ZrPSe6-: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 2008, 130, 12270−12272.  doi: 10.1021/ja804166m

    20. [20]

      Chondroudis, K.; Kanatzidis, M. G. (1) (infinity) P3Se4-: a novel polyanion in K3RuP5Se10; formation of Ru−P bonds in a molten polyselenophosphate flux. Angew. Chem. Int. Edit. 1997, 36, 1324−1326.  doi: 10.1002/anie.199713241

    21. [21]

      Morris, C. D.; Chung, I.; Park, S.; Harrison, C. M.; Clark, D. J.; Jang, J. I.; Kanatzidis, M. G. Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. J. Am. Chem. Soc. 2012, 134, 20733−20744.  doi: 10.1021/ja309386e

    22. [22]

      Banerjee, S.; Szarko, J. M.; Yuhas, B. D.; Malliakas, C. D.; Chen, L. X.; Kanatzidis, M. G. Room temperature light emission from the low-dimensional semiconductors AZrPS6 (A = K, Rb, Cs). J. Am. Chem. Soc. 2010, 132, 5348−5350.  doi: 10.1021/ja1004653

    23. [23]

      Chung, I.; Biswas, K.; Song, J. H.; Androulakis, J.; Chondroudis, K.; Paraskevopoulos, K. M.; Freeman, A. J.; Kanatzidis, M. G. Rb4Sn5P4Se20: a semimetallic selenophosphate. Angew. Chem. Int. Edit. 2011, 50, 8834−8838.  doi: 10.1002/anie.201104050

    24. [24]

      Bron, P.; Johansson, S.; Zick, K.; auf der Gunne, J. S.; Dehnen, S.; Roling, B. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 2013, 135, 15694−15697.  doi: 10.1021/ja407393y

    25. [25]

      Rigaku Oxford Diffraction. CrysAlisPro Software System, Version v40.67a, Rigaku Corporation, Oxford, UK 2019.

    26. [26]

      Siemens, SHELXTL Version 5 Reference Manual. Siemens Energy & Automation Inc. Madison, WI 1994.

    27. [27]

      Korum, G. Reflectance Spectroscopy. Springer, New York 1969.

    28. [28]

      Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.; Nobes, R. H. Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int. J. Quantum Chem. 2000, 77, 895−910.  doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C

    29. [29]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2002, 14, 2717−2744.  doi: 10.1088/0953-8984/14/11/301

    30. [30]

      Morris, C. D.; Li, H.; Jin, H.; Malliakas, C. D.; Peters, J. A.; Trikalitis, P. N.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. Cs2MIIMIV3Q8 (Q = S, Se, Te): an extensive family of layered semiconductors with diverse band gaps. Chem. Mater. 2013, 25, 3344−3356.  doi: 10.1021/cm401817r

    31. [31]

      Hwang, S. J.; Iyer, R. G.; Kanatzidis, M. G. Quaternary selenostannates Na2-xGa2-xSn1+xSe6 and AGaSnSe4 (A = K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe4. J. Solid State Chem. 2004, 177, 3640−3649.  doi: 10.1016/j.jssc.2004.06.019

    32. [32]

      Wu, P.; Lu, Y. J.; Ibers, J. A. Synthesis and structures of the quaternary sulfides KGaSnS4, KInGeS4, and KGaGeS4. J. Solid State Chem. 1992, 97, 383−390.  doi: 10.1016/0022-4596(92)90047-Y

    33. [33]

      Jang, J. I.; Park, S.; Harrison, C. M.; Clark, D. J.; Morris, C. D.; Chung, I.; Kanatzidis, M. G. K4GeP4Se12: a case for phase-change nonlinear optical chalcogenide. Opt. Lett. 2013, 38, 1316−1318.  doi: 10.1364/OL.38.001316

    34. [34]

      Hu, X. N.; Xiong, L.; Wu, L. M. Six new members of the A2M(II)M(IV)3Q8 family and their structural relationship. Cryst. Growth Des. 2018, 18, 3124−3131.  doi: 10.1021/acs.cgd.8b00247

    35. [35]

      Luo, X. Y.; Liang, F.; Zhou, M. L.; Guo, Y. W.; Li, Z.; Lin, Z. S.; Yao, J. Y.; Wu, Y. C. K2ZnGe3S8: a congruent-melting infrared nonlinear-optical material with a large band gap. Inorg. Chem. 2018, 57, 9446−9452.  doi: 10.1021/acs.inorgchem.8b01437

    36. [36]

      Li, P.; Li, L. H.; Chen, L.; Wu, L. M. Synthesis, structure and theoretical studies of a new ternary non-centrosymmetric beta-LaGaS3. J. Solid State Chem. 2010, 183, 444−450.  doi: 10.1016/j.jssc.2009.11.030

    37. [37]

      Luo, Z. Z.; Lin, C. S.; Cui, H. H.; Zhang, W. L.; Zhang, H.; He, Z. Z.; Cheng, W. D. SHG materials SnGa4Q7 (Q = S, Se) appearing with large conversion efficiencies, high damage thresholds, and wide transparencies in the mid-infrared region. Chem. Mater. 2014, 26, 2743−2749.  doi: 10.1021/cm5006955

    38. [38]

      Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: CsLu7Q11 and (ClCs6) RE21Q34 (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588−4596.  doi: 10.1021/ic202494w

    39. [39]

      Wu, Y.; Bensch, W. Syntheses, crystal structures and spectroscopic properties of Ag2Nb[P2S6][S2] and KAg2[PS4]. J. Solid State Chem. 2009, 182, 471−478.  doi: 10.1016/j.jssc.2008.11.017

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    20. [20]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

Metrics
  • PDF Downloads(1)
  • Abstract views(352)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return