Citation: Cheng-Peng WANG, Chiranjeevulu KASHI, Xiao-Liang YE, Wen-Hua LI, Guan-E WANG, Gang XU. A Zinc Based Coordination Polymer: Multi-functional Material for Humidity Sensor and Fluorescence Applications[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1138-1144. doi: 10.14102/j.cnki.0254–5861.2011–3133 shu

A Zinc Based Coordination Polymer: Multi-functional Material for Humidity Sensor and Fluorescence Applications

  • Corresponding author: Guan-E WANG, gewang@fjirsm.ac.cn
  • Received Date: 4 February 2021
    Accepted Date: 9 March 2021

    Fund Project: the National Natural Science Foundation of China 21822109the National Natural Science Foundation of China 2020000052the National Natural Science Foundation of China 21905280the National Natural Science Foundation of China 21975254the National Natural Science Foundation of China 21950410532the National Natural Science Foundation of China 24074283Key Research Program of Frontier Science, CAS QYZDB-SSW-SLH023International Partnership Program of CAS 121835KYSB201800the Natural Science Foundation of Fujian Province 2017J05094China Post-doctoral Science Foundation 2019M662254the Youth Innovation Promotion Association CAS 2018342Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Open Research Fund ES202080085

Figures(5)

  • Coordination polymers with structurally designable and energy, fluorescence, electrical etc. properties, are expected to become the next generation of multifunctional materials. A new compound, Zn(OAc)SPhNH (HSPhNH2 = 4-aminophenol), was hydrothermally synthesized using 4-aminophenol as template and balance anion. The single-crystal X-ray diffraction showed a two-dimensional (2D) structure constructed of Zn(OAc)+ and SPhNH-. This compound exhibited typical semiconductive behavior, whose conductivity increased with the raise of temperature. Moreover, the conductivity was positively correlated with humidity. The compound also showed blue light emission property, which indicates great potential applications in light-emitting diodes.
  • 加载中
    1. [1]

      Molina-Jorda, J. M. Highly adsorptive and magneto-inductive guefoams (multifunctional guest-containing foams) for enhanced energy-efficient preconcentration and management of VOCs. ACS Appl. Mater. Interfaces 2020, 12, 11702−11712.  doi: 10.1021/acsami.9b22858

    2. [2]

      Guo, Z. G.; Cao, R.; Wang, X.; Li, H. F.; Yuan, W. B.; Wang, G. J.; Wu, H. H.; Li, J. A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework. J. Am. Chem. Soc. 2009, 131, 6894−6895.  doi: 10.1021/ja9000129

    3. [3]

      Lee, E. Y.; Jang, S. Y.; Suh, M. P. Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2]. J. Am. Chem. Soc. 2005, 127, 6374−6381.  doi: 10.1021/ja043756x

    4. [4]

      Salonitis, K.; Pandremenos, J.; Paralikas, J.; Chryssolouris, G. Multifunctional materials: engineering applications and processing challenges. Int. J. Adv. Manuf. Tech. 2009, 49, 803−826.

    5. [5]

      Xi, X.; Fang, Y.; Dong, T.; Cui, Y. Bottom-up assembly from a helicate to homochiral micro- and mesoporous metal-organic frameworks. Angew. Chem. Int. Ed. 2011, 50, 1154−1158.  doi: 10.1002/anie.201004885

    6. [6]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663−23.  doi: 10.1002/adma.201703663

    7. [7]

      Kongpatpanich, K.; Horike, S.; Sugimoto, M.; Kitao, S.; Seto, M.; Kitagawa, S. A porous coordination polymer with a reactive diiron paddlewheel unit. Chem. Commun. 2014, 50, 2292−2294.  doi: 10.1039/c3cc47954d

    8. [8]

      Lin, W.; Rieter, W. J.; Taylor, K. M. Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 2009, 48, 650−658.  doi: 10.1002/anie.200803387

    9. [9]

      Mo, K.; Yang, Y.; Cui, Y. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc. 2014, 136, 1746−1749.  doi: 10.1021/ja411887c

    10. [10]

      Liang, L. F.; Jiang, F. L.; Chen, Q. H.; Yuan, D. Q.; Hong, M. C. Ultra-microporous metal-organic framework with high concentration of free carboxyl groups and Lewis basic sites for CO2 capture at ambient conditions. Chin. J. Struct. Chem. 2019, 38, 559−565.

    11. [11]

      Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869−932.  doi: 10.1021/cr200190s

    12. [12]

      Dinca, M.; Long, J. R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 2008, 47, 6766−6779.  doi: 10.1002/anie.200801163

    13. [13]

      Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572−1580.  doi: 10.1021/ja511539a

    14. [14]

      Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837−1866.  doi: 10.1039/C5EE00762C

    15. [15]

      Huang, J.; He, Y.; Yao, M. S.; He, J.; Xu, G.; Zeller, M.; Xu, Z. A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. J. Mater. Chem. A 2017, 5, 16139−16143.  doi: 10.1039/C7TA02069D

    16. [16]

      Sun, L.; Campbell, M. G.; Dinca, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566−3579.  doi: 10.1002/anie.201506219

    17. [17]

      Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 522−5234.

    18. [18]

      Wang, W.; Wen, W. F.; Liu, C. S.; He, L. F.; Zhang, Y.; Yang, S. L.; Chen, W. T. Syntheses, structures, solid-state photoluminescence and optical band gaps of two novel heterometallic lanthanide/mercury compounds. J. Solid State Chem. 2020, 291, 121623−7.  doi: 10.1016/j.jssc.2020.121623

    19. [19]

      Chen, L. Z.; Ji, Q.; Dan, Y. Y. Synthesis, structure, and luminescent and dielectric properties of two novel 1D chains based on a t-shaped tripodal ligand 4-(4, 5-dicarboxy-1H-imidazol-2-yl)pyridineloxide. Chin. J. Struct. Chem. 2016, 35, 1728−1735.

    20. [20]

      Chen, W. T. Synthesis, structure and photophysical properties of a new zinc compound. Inorg. Nano. Met. Chem. 2020, 50, 1295−1301.  doi: 10.1080/24701556.2020.1745840

    21. [21]

      Gu, X. Y.; Jin, C. C.; Cheng, J. W. A series of lanthanide-organic frameworks constructed by Ln4(OH)4 clusters and mixed ligands. Chin. J. Struct. Chem. 2019, 38, 103−108.

    22. [22]

      Liu, G. N.; Zhu, W. J.; Zhang, M. J.; Xu, B.; Liu, Q. S.; Zhang, Z. W.; Li, C. C. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide. J. Solid State. Chem. 2014, 218, 109−115.  doi: 10.1016/j.jssc.2014.06.012

    23. [23]

      Lustig, W. P.; Li, J. Luminescent metal-organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coor. Chem. Rev. 2018, 373, 116−147.  doi: 10.1016/j.ccr.2017.09.017

    24. [24]

      Wu, Q. Q.; Wen, Y. H. Hydrothermal syntheses, crystal structures and luminescence properties of Zn(II) and Cu(II) complexes based on 2, 2΄-((sulfonylbis(4, 1-phenylene))bis(oxy))diacetic acid. Chin. J. Struct. Chem. 2019, 39, 294−300.

    25. [25]

      Wei, X. J.; Li, Y. H.; Qin, Z. B.; Cui, G. H. Two zinc(II) coordination polymers for selective luminescence sensing of iron(III) ions and photocatalytic degradation of methylene blue. J. Mol. Struct. 2019, 1175, 253−260.  doi: 10.1016/j.molstruc.2018.08.001

    26. [26]

      Liu, R. S.; Drozd, V.; Bagkar, N.; Shen, C. C.; Baginskiy, I.; Chen, C. H.; Tan, C. H. Direct white light phosphor based on metallorganic coordination extended networks for UV-light-emitting diodes. J. Electrochem. Soc. 2008, 155, 71−73.

    27. [27]

      Cai, M. L.; Wang, G. E.; Yao, M. S.; Wu, G. D.; Li, Y. Z.; Xu, G. Semiconductive 1D nanobelt iodoplumbate hybrid with high humidity response. Inorg. Chem. Commun. 2018, 93, 42−46.  doi: 10.1016/j.inoche.2018.05.002

    28. [28]

      Lv, X. J.; Yao, M. S.; Wang, G. E.; Li, Y. Z.; Xu, G. A new 3D cupric coordination polymer as chemiresistor humidity sensor: narrow hysteresis, high sensitivity, fast response and recovery. Sci. China Chem. 2017, 60, 1197−1204.

    29. [29]

      Chen, Z.; Luo, D.; Kang, M.; Lin, Z. New semiconducting coordination polymers from zinc sulfide clusters and chains. Inorg. Chem. 2011, 50, 4674−4676.  doi: 10.1021/ic2004003

    30. [30]

      Sampanthar, J. T.; Vittal, J. J. Syntheses and crystal structures of the dimer [{Zn(SPh)2(bpy)}2(mu-bpy)] and two forms of the zigzag coordination polymer [{Zn(SPh)2 (mu-bpy)}n], (bpy = 4, 4΄-bipyridyl). J. Chem. Soc. Dalton. 1999, 1993−1997.

    31. [31]

      Tian, M.; Fu, Z. H.; Nath, B.; Yao, M. S. Synthesis of large and uniform Cu3TCPP truncated quadrilateral nano-flake and its humidity sensing properties. RSC. Adv. 2016, 6, 88991−88995.  doi: 10.1039/C6RA19403F

    32. [32]

      Xie, W.; Liu, B.; Xiao, S.; Li, H.; Wang, Y.; Cai, D.; Wang, D.; Wang, L.; Liu, Y.; Li, Q.; Wang, T. High performance humidity sensors based on CeO2 nanoparticles. Sens. Actuat. B. Chem. 2015, 215, 125−132.  doi: 10.1016/j.snb.2015.03.051

    33. [33]

      Wang, L.; He, Y.; Hu, J.; Qi, Q.; Zhang, T. DC humidity sensing properties of BaTiO3 nanofiber sensors with different electrode materials. Sens. Actuat. B Chem. 2011, 153, 460−464.  doi: 10.1016/j.snb.2010.11.016

    34. [34]

      Ahmadipour, M.; Ain, M. F.; Ahmad, Z. A. Fabrication of resistance type humidity sensor based on CaCu3Ti4O12 thick film. Measurement 2016, 94, 902−908.  doi: 10.1016/j.measurement.2016.09.030

    35. [35]

      Bi, H. C.; Yin, K. B.; Xie, X.; Ji, J.; Wan, S.; Sun, L. T.; Terrones, M.; Dresselhaus, M. S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714−7.

    36. [36]

      Zhu, Y. C.; Bando, Y.; Xue, D. F.; Golberg, D. Oriented assemblies of ZnS one-dimensional nanostructures. Adv. Mater. 2004, 16, 831−834.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    5. [5]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

Metrics
  • PDF Downloads(1)
  • Abstract views(284)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return