Citation: Sheng TANG, Rong-Min YU, Can-Zhong LU. Synthesis, Crystal Structure and Photoluminescence of a TADF Dinuclear Cu(I) Complex[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1145-1151. doi: 10.14102/j.cnki.0254–5861.2011–3130 shu

Synthesis, Crystal Structure and Photoluminescence of a TADF Dinuclear Cu(I) Complex

  • Corresponding author: Rong-Min YU, rongminyu@fjirsm.ac.cn Can-Zhong LU, czlu@fjirsm.ac.cn
  • Received Date: 12 February 2021
    Accepted Date: 16 March 2021

    Fund Project: the National Natural Science Foundation of China 21521061the National Natural Science Foundation of China 51672271the National Natural Science Foundation of China 21671190

Figures(6)

  • A binuclear Cu(I) complex [Cu(PCNP)(mepypz)]2(BF4)2 (1, PCNP = 2, 6-bis(diphenylphosphine)-benzonitrile, mepypz = 2-(1H-pyrazol-3-yl)pyridine) was synthesized from the reaction of Cu(CH3CN)4BF4, PCNP and mepypz in CH2Cl2 at room temperature. The compound was characterized by NMR, UV-vis and X-ray single-crystal structure analysis. It crystallizes in monoclinic space group P21/c with a = 14.0139(5), b = 11.8149(3), c = 27.1248(10) Å, β = 96.686(4)°, V = 4460.6(3) Å3, Z = 2, Mr = 1561.97, Dc = 1.163 g/cm3, F(000) = 1600.0, μ = 1.774 mm–1, GOOF = 1.071, the final R = 0.0523 and wR = 0.1412 for 7919 observed reflections with I > 2σ(I). The Cu atoms in the complex are four-coordinated and adopt a distorted tetrahedral coordination geometry. In the solid state, the complex exhibits yellowish-green emission with a peak wavelength of 546 nm, a lifetime of 390 μs, and a quantum yield of 0.45 at room temperature. The temperature-dependent investigation of luminescent properties suggests that the complex emits thermally activated delayed fluorescence (TADF) at room temperature.
  • 加载中
    1. [1]

      Kobayashi, A.; Ehara, T.; Yoshida, M.; Kato, M. Quantitative thermal synthesis of Cu(I) coordination polymers that exhibit thermally activated delayed fluorescence. Inorg. Chem. 2020, 59, 9511−9520.  doi: 10.1021/acs.inorgchem.0c00341

    2. [2]

      Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Jalebi, M. A.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. High-performance light-emitting diodes based on carbene-metal-amides. Science 2017, 356, 159−163.  doi: 10.1126/science.aah4345

    3. [3]

      Artem'ev, A. V.; Davydova, M. P.; Berezin, A. S.; Ryzhikov, M. R.; Samsonenko, D. G. Dicopper(I) paddle-wheel complexes with thermally activated delayed fluorescence adjusted by ancillary ligands. Inorg. Chem. 2020, 59, 10699−10706.  doi: 10.1021/acs.inorgchem.0c01171

    4. [4]

      Schinabeck, A.; Leitl, M. J.; Yersin, H. Dinuclear Cu(I) Complex with combined bright TADF and phosphorescence, zero-field splitting and spin-lattice relaxation effects of the triplet state. J. Phys. Chem. Lett. 2018, 9, 2848−2856.  doi: 10.1021/acs.jpclett.8b00957

    5. [5]

      Osawa, M.; Hoshino, M.; Hashimoto, M.; Kawata, I.; Igawa, S.; Yashima, M. Application of three-coordinate copper(I) complexes with halide ligands in organic light-emitting diodes that exhibit delayed fluorescence. Dalton Trans. 2015, 44, 8369−78.  doi: 10.1039/C4DT02853H

    6. [6]

      Chen, X. L.; Yu, R.; Wu, X. Y.; Liang, D.; Jia, J. H.; Lu, C. Z. A strongly greenish-blue-emitting Cu4Cl4 cluster with an efficient spin-orbit coupling (SOC): fast phosphorescence versus thermally activated delayed fluorescence. Chem. Commun. (Camb) 2016, 52, 6288−91.

    7. [7]

      Lin, L.; Chen, D. H.; Yu, R.; Chen, X. L.; Zhu, W. J.; Liang, D.; Chang, J. F.; Zhang, Q.; Lu, C. Z. Photo- and electro-luminescence of three TADF binuclear Cu(I) complexes with functional tetraimine ligands. J. Mater. Chem. C 2017, 5, 4495−4504.  doi: 10.1039/C7TC00443E

    8. [8]

      Zhang, X. Q.; Chi, Z. G.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C 2013, 1, 3376−3390.  doi: 10.1039/c3tc30316k

    9. [9]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931−58.  doi: 10.1002/adma.201402532

    10. [10]

      Brunner, F.; Babaei, A.; Pertegas, A.; Junquera-Hernandez, J. M.; Prescimone, A.; Constable, E. C.; Bolink, H. J.; Sessolo, M.; Orti, E.; Housecroft, C. E. Phosphane tuning in heteroleptic [Cu(N^N)(P^P)]+ complexes for light-emitting electrochemical cells. Dalton Trans. 2019, 48, 446−460.  doi: 10.1039/C8DT03827A

    11. [11]

      Alkan-Zambada, M.; Keller, S.; Martínez-Sarti, L.; Prescimone, A.; Junquera-Hernández, J. M.; Constable, E. C.; Bolink, H. J.; Sessolo, M.; Ortí, E.; Housecroft, C. E. [Cu(P^P)(N^N)][PF6] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2, 2΄-bipyridine ligands for light-emitting electrochemical cells. J. Mater. Chem. C 2018, 6, 8460−8471.  doi: 10.1039/C8TC02882F

    12. [12]

      Farias, G.; Salla, C. A. M.; Heying, R. S.; Bortoluzzi, A. J.; Curcio, S. F.; Cazati, T.; Santos, P. L.; Monkman, A. P.; Souza, B.; Bechtold, I. H. Reducing lifetime in Cu(I) complexes with thermally activated delayed fluorescence and phosphorescence promoted by chalcogenolate-diimine ligands. J. Mater. Chem. C 2020, 8, 14595−14604.  doi: 10.1039/D0TC03660A

    13. [13]

      Mahoro, G. U.; Fernandez-Cestau, J.; Renaud, J. L.; Coto, P. B.; Costa, R. D.; Gaillard, S. Recent advances in solid-state lighting devices using transition metal complexes exhibiting thermally activated delayed fluorescent emission mechanism. Adv. Opt. Mater. 2020, 8.

    14. [14]

      Reeves, Z. R.; Mann, K. L. V.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D.; Barigelletti, F.; Armaroli, N. Lanthanide complexes of a new sterically hindered potentially hexadentate podand ligand based on a tris(pyrazolyl)borate core; crystal structures, solution structures and luminescence properties. J. Chem. Soc., Dalton Trans. 1999, 3, 349−356.

    15. [15]

      Hingst, M.; Tepper, M.; Stelzer, O. Nucleophilic phosphanylation of fluoroaromatic compounds with carboxyl, carboxymethyl, and aminomethyl functionalities-an efficient synthetic route to amphiphilic arylphosphanes. Eur. J. Inorg. Chem. 1998, 1, 73−82.

    16. [16]

      Miller, P. W.; Nieuwenhuyzen, M.; Charmant, J. P. H.; James, S. L. The cyclic "silver-diphos" motif [Ag2(μ-diphosphine)2]2+ as a synthon for building up larger structures. Inorg. Chem. 2008, 47, 8367−8379.  doi: 10.1021/ic800664f

    17. [17]

      Sheldrick, G. M. SHELXL-97, Program for Solution of Crystal Structures. Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany 1997.

    18. [18]

      Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454−464.  doi: 10.1016/0009-2614(96)00440-X

    19. [19]

      Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439−4449.  doi: 10.1063/1.475855

    20. [20]

      Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218−8224.  doi: 10.1063/1.477483

    21. [21]

      Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.  doi: 10.1103/PhysRevB.37.785

    22. [22]

      Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5653.  doi: 10.1063/1.464913

    23. [23]

      Roy, L. E.; Hay, P. J.; Martin, R. L. Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput. 2008, 4, 1029−1031.  doi: 10.1021/ct8000409

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT 2009.

    25. [25]

      Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    26. [26]

      Saito, K.; Arai, T.; Takahashi, N.; Tsukuda, T.; Tsubomura, T. A series of luminescent Cu(I) mixed-ligand complexes containing 2, 9-dimethyl-1, 10-phenanthroline and simple diphosphine ligands. Dalton Trans. 2006, 37, 4444−4448.

    27. [27]

      Yersin, H.; Rausch, A. F.; Czerwieniec, R. Organometallic Emitters for OLEDs: Triplet Harvesting, Singlet Harvesting, Case Structures, and Trends. Physics of Organic Semiconductors. Wiley-VCH Verlag, New York 2012, pp 371−424.

    28. [28]

      Liang, D.; Chen, X. L.; Liao, J. Z.; Hu, J. Y.; Jia, J. H.; Lu, C. Z. Highly efficient cuprous complexes with thermally activated delayed fluorescence for solution-processed organic light-emitting devices. Inorg. Chem. 2016, 55, 7467–7475.  doi: 10.1021/acs.inorgchem.6b00763

    29. [29]

      Czerwieniec, R.; Yersin, H. Diversity of copper(I) complexes showing thermally activated delayed fluorescence: basic photophysical analysis. Inorg. Chem. 2015, 54, 4322−4327.  doi: 10.1021/ic503072u

    30. [30]

      Cai, X. Y.; Li, X. L.; Xie, G. Z.; He, Z. Z.; Gao, K.; Liu, K. K.; Chen, D. C.; Cao, Y.; Su, S. J. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chem. Sci. 2016, 7, 4264−4275.  doi: 10.1039/C6SC00542J

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    7. [7]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    8. [8]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    9. [9]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    10. [10]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    11. [11]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    12. [12]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    18. [18]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

Metrics
  • PDF Downloads(3)
  • Abstract views(344)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return