Citation: Ying-Ying HUANG, Qing-Dou XU, Sheng-Min HU, Xin-Tao WU, Tian-Lu SHENG. Syntheses, Crystal Structures and Different Magnetic Behaviors of Three Cyanide-bridged FeII-MII (M = Fe, Co and Mn) Complexes[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1161-1168. doi: 10.14102/j.cnki.0254–5861.2011–3123 shu

Syntheses, Crystal Structures and Different Magnetic Behaviors of Three Cyanide-bridged FeII-MII (M = Fe, Co and Mn) Complexes

  • Corresponding author: Tian-Lu SHENG, tsheng@fjirsm.ac.cn
  • Received Date: 27 January 2021
    Accepted Date: 4 March 2021

    Fund Project: the National Natural Science Foundation of China 21773243the National Natural Science Foundation of China 21973095the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20010200

Figures(4)

  • Three dinuclear cyanide-bridged complexes [FeII(PY5OMe2)CNMII(PY5OMe2)](OTf)3 (M = Fe 1, M = Co 2, M = Mn 3) (PY5OMe2 = 2, 6-bis-((2-pyridyl)methoxymethane)pyridine OTf = CF3SO3-) have been synthesized and characterized. Single-crystal diffraction analyses show these three dinuclear compounds are very similar in structure. The measured ν(CN) results for compounds 1~3 suggest that Mn2+ is electron-poorer than Fe2+ and Co2+. Meanwhile, the temperature dependence of magnetic susceptibilities of complexes 1~3 reveals that in these three complexes, all the cyanide-carbon coordinated Fe(II) is low-spin, and Co(II) for 2 and Mn(II) for 3 are both in a high-spin state through 2~400 K but the cyanide-nitrogen coordinated Fe(II) for complex 1 exhibits spin crossover (SCO) behavior over 300 K and a hysteresis of 36 K in both cooling and heating modes.
  • 加载中
    1. [1]

      Shatruk, M.; Avendano, C.; Dunbar, K. R. Cyanide-bridged complexes of transition metals: a molecular magnetism perspective. Prog. Inorg. Chem. 2009, 56, 155‒334.

    2. [2]

      Wang, J. H.; Li, Z. Y.; Yamashita, M.; Bu, X. H. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord. Chem. Rev. 2021, 428, 213617‒213637.  doi: 10.1016/j.ccr.2020.213617

    3. [3]

      Wang, J. H.; Vignesh, K. R.; Zhao, J.; Li, Z. Y.; Dunbar, K. R. Charge transfer and slow magnetic relaxation in a series of cyano-bridged Fe4IIIM2II (M = FeII, CoII, NiII) molecules. Inorg. Chem. Front. 2019, 6, 493‒497.

    4. [4]

      Su, S. D.; Zhu, X. Q.; Wen, Y. H.; Zhang, L. T.; Yang, Y. Y.; Lin, C. S.; Wu, X. T.; Sheng, T. L. A diruthenium-based mixed spin complex Ru25+ (S = 1/2)-CN-Ru25+ (S = 3/2). Angew. Chem. Int. Ed. 2019, 131, 15344‒15348.

    5. [5]

      Yang, Y. Y.; Zhu, X. Q.; Hu, S. M.; Su, S. D.; Zhang, L. T.; Wen, Y. H.; Wu, X. T.; Sheng, T. L. Different degrees of electron delocalization in mixed valence Ru-Ru-Ru compounds by cyanido-/isocyanido-bridge isomerism. Angew. Chem. Int. Ed. 2018, 57, 14046‒14050.  doi: 10.1002/anie.201806157

    6. [6]

      Lescouezec, R.; Vaissermann, J.; Ruiz-Perez, C.; Lloret, F.; Carrasco, R.; Julve, M.; Verdaguer, M.; Dromzee, Y.; Gatteschi, D.; Wernsdorfer, W. Cyanide-bridged iron(III)-cobalt(II) double zigzag ferromagnetic chains: two new molecular magnetic nanowires. Angew. Chem. Int. Ed. 2003, 42, 1483‒1486.  doi: 10.1002/anie.200250243

    7. [7]

      Wang, S.; Zuo, J. L.; Gao, S.; Song, Y.; Zhou, H. C.; Zhang, Y. Z.; You, X. Z. The observation of superparamagnetic behavior in molecular nanowires. J. Am. Chem. Soc. 2004, 126, 8900‒8901.  doi: 10.1021/ja0483995

    8. [8]

      Toma, L. M.; Lescouezec, R.; Pasan, J.; Ruiz-Perez, C.; Vaissermann, J.; Cano, J.; Carrasco, R.; Wernsdorfer, W.; Lloret, F.; Julve, M. [Fe(bpym)(CN)4]-: a new building block for designing single-chain magnets. J. Am. Chem. Soc. 2006, 128, 4842‒4853.  doi: 10.1021/ja058030v

    9. [9]

      Hoshino, N.; Iijima, F.; Newton, G. N.; Yoshida, N.; Shiga, T.; Nojiri, H.; Nakao, A.; Kumai, R.; Murakami, Y.; Oshio, H. Three-way switching in a cyanide-bridged [CoFe] chain. Nat. Chem. 2012, 4, 921‒926.  doi: 10.1038/nchem.1455

    10. [10]

      Pichon, C.; Suaud, N.; Duhayon, C.; Guihery, N.; Sutter, J. P. Cyano-bridged Fe(II)-Cr(III) single-chain magnet based on pentagonal bipyramid units: on the added value of aligned axial anisotropy. J. Am. Chem. Soc. 2018, 140, 7698‒7704.  doi: 10.1021/jacs.8b03891

    11. [11]

      Sokol, J. J.; Hee, A. G.; Long, J. R. A cyano-bridged single-molecule magnet: slow magnetic relaxation in a trigonal prismatic MnMo6(CN)18 cluster. J. Am. Chem. Soc. 2002, 124, 7656‒7657.  doi: 10.1021/ja0263846

    12. [12]

      Choi, H. J.; Sokol, J. J.; Long, J. R. Raising the spin-reversal barrier in cyano-bridged single-molecule magnets: linear Mn(III)2M(III)(CN)6 (M = Cr, Fe) species incorporating [(5-brsalen)Mn]+ units. Inorg. Chem. 2004, 43, 1606‒1608.  doi: 10.1021/ic035327q

    13. [13]

      Zhang, Y. Z.; Mallik, U. P.; Clerac, R.; Rath, N. P.; Holmes, S. M. Irreversible solvent-driven conversion in cyanometalate {Fe2Ni}n (n = 2, 3) single-molecule magnets. Chem. Commun. 2011, 47, 7194‒7196.  doi: 10.1039/c1cc10679a

    14. [14]

      Cho, K. J.; Ryu, D. W.; Kwak, H. Y.; Lee, J. W.; Lee, W. R.; Lim, K. S.; Koh, E. K.; Kwon, Y. W.; Hong, C. S. Designed cyanide- and phenoxide-bridged Fe(III)Mn(III) single-molecule magnet constructed by highly blocked paramagnetic precursors. Chem. Commun. 2012, 48, 7404‒7406.  doi: 10.1039/c2cc32503a

    15. [15]

      Saber, M. R.; Dunbar, K. R. Trigonal bipyramidal 5d-4f molecules with SMM behavior. Chem. Commun. 2014, 50, 2177‒2179.  doi: 10.1039/C3CC49124B

    16. [16]

      Xin, Y.; Wang, J.; Zychowicz, M.; Zakrzewski, J. J.; Nakabayashi, K.; Sieklucka, B.; Chorazy, S.; Ohkoshi, S. I. Dehydration-hydration switching of single-molecule magnet behavior and visible photoluminescence in a cyanido-bridged Dy(III)Co(III) framework. J. Am. Chem. Soc. 2019, 141, 18211‒18220.  doi: 10.1021/jacs.9b09103

    17. [17]

      Papanikolaou, D.; Margadonna, S.; Kosaka, W.; Ohkoshi, S.; Brunelli, M.; Prassides, K. X-ray illumination induced Fe(II) spin crossover in the Prussian blue analogue cesium iron hexacyanochromate. J. Am. Chem. Soc. 2006, 128, 8358‒8363.  doi: 10.1021/ja061650r

    18. [18]

      Kosaka, W.; Nomura, K.; Hashimoto, K.; Ohkoshi, S. Observation of an Fe(II) spin-crossover in a cesium iron hexacyanochromate. J. Am. Chem. Soc. 2005, 127, 8590‒8591.  doi: 10.1021/ja050118l

    19. [19]

      Jeon, I. R.; Calancea, S.; Panja, A.; Piñero Cruz, D. M.; Koumousi, E. S.; Dechambenoit, P.; Coulon, C.; Wattiaux, A.; Rosa, P.; Mathonière, C.; Clérac, R. Spin crossover or intra-molecular electron transfer in a cyanido-bridged Fe/Co dinuclear dumbbell: a matter of state. Chem. Sci. 2013, 4, 2463‒2470.  doi: 10.1039/c3sc22069a

    20. [20]

      Li, Z. Y.; Dai, J. W.; Damjanović, M.; Shiga, T.; Wang, J. H.; Zhao, J.; Oshio, H.; Yamashita, M.; Bu, X. H. Structure switching and modulation of magnetic properties in diarylethene-bridged metallosupramolecular compounds via controlled coordination-driven self-assembly. Angew. Chem. Int. Ed. 2019, 58, 4339‒4344.  doi: 10.1002/anie.201900789

    21. [21]

      Herchel, R.; Boca, R.; Gembicky, M.; Kozisek, J.; Renz, F. Spin crossover in a tetranuclear Cr(III)-Fe(III)3 complex. Inorg. Chem. 2004, 43, 4103‒4105.  doi: 10.1021/ic035374i

    22. [22]

      Kawabata, S.; Chorazy, S.; Zakrzewski, J. J.; Imoto, K.; Fujimoto, T.; Nakabayashi, K.; Stanek, J.; Sieklucka, B.; Ohkoshi, S. I. In situ ligand transformation for two-step spin crossover in Fe(II)[M(IV)(CN)8]4- (M = Mo, Nb) cyanido-bridged frameworks. Inorg. Chem. 2019, 58, 6052‒6063.  doi: 10.1021/acs.inorgchem.9b00361

    23. [23]

      Papanikolaou, D.; Kosaka, W.; Margadonna, S.; Kagi, H.; Ohkoshi, S. I.; Prassides, K. Piezomagnetic behavior of the spin crossover Prussian blue analogue CsFe[Cr(CN)6]. J. Phys. Chem. C. 2007, 111, 8086‒8091.  doi: 10.1021/jp068885+

    24. [24]

      Kuppusamy, S. K.; Mario, R. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 2017, 346, 176‒205.  doi: 10.1016/j.ccr.2017.03.024

    25. [25]

      Holovchenko, A.; Dugay, J.; Gimenez-Marques, M.; Torres-Cavanillas, R.; Coronado, E.; van der Zant, H. S. J. Near room-temperature memory devices based on hybrid spin-crossover SiO2 nanoparticles coupled to single-layer graphene nanoelectrodes. Adv. Mater. 2016, 28, 7228‒7233.  doi: 10.1002/adma.201600890

    26. [26]

      Cowan, M. G.; Olguin, J.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S. Reversible switching of a cobalt complex by thermal, pressure, and electrochemical stimuli: abrupt, complete, hysteretic spin crossover. J. Am. Chem. Soc. 2012, 134, 2892‒2894.  doi: 10.1021/ja208429u

    27. [27]

      Thies, S.; Sell, H.; Schuett, C.; Bornholdt, C.; Naether, C.; Tuczek, F.; Herges, R. Light-induced spin change by photodissociable external ligands: a new principle for magnetic switching of molecules. J. Am. Chem. Soc. 2011, 133, 16243‒16250.  doi: 10.1021/ja206812f

    28. [28]

      Goldsmith, C. R.; Cole, A. P.; Stack, T. D. C–H activation by a mononuclear manganese(III) hydroxide complex: synthesis and characterization of a manganese-lipoxygenase mimic? J. Am. Chem. Soc. 2005, 127, 9904‒9912.  doi: 10.1021/ja039283w

    29. [29]

      Rudd, D. J.; Goldsmith, C. R.; Cole, A. P.; Stack, T. D.; Hodgson, K. O.; Hedman, B. X-ray absorption spectroscopic investigation of the spin-transition character in a series of single-site perturbed iron(II) complexes. Inorg. Chem. 2005, 44, 1221‒1229.  doi: 10.1021/ic048765l

    30. [30]

      Bain, G. A.; Berry, J. F. Diamagnetic corrections and Pascal's constants. J. Chem. Edu. 2008, 85, 532‒536.  doi: 10.1021/ed085p532

    31. [31]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Crystallogr. C. Struct. Chem. 2015, 71, 3‒8.  doi: 10.1107/S2053229614024218

    32. [32]

      Phan, H.; Hrudka, J. J.; Igimbayeva, D.; Lawson Daku, L. M.; Shatruk, M. A simple approach for predicting the spin state of homoleptic Fe(II) tris-diimine complexes. J. Am. Chem. Soc. 2017, 139, 6437‒6447.  doi: 10.1021/jacs.7b02098

    33. [33]

      Banci, L.; Bencini, A.; Benelli, C.; Gatteschi, D.; Zanchini, C. Spectral-structural correlations in high-spin cobalt(II) complexes. Struct. Bond. 1982, 52, 37‒86.

    34. [34]

      Benmansour, S.; Setifi, F.; Gómez-García, C. J.; Triki, S.; Coronado, E.; Salaün, J. Y. A novel polynitrile ligand with different coordination modes: synthesis, structure and magnetic properties of the series [M(tcnoprOH)2(H2O)2] (M = Mn, Co and Cu) (tcnoprOH- = [(NC)2CC(OCH2CH2CH2OH)C(CN)2]-). J. Mol. Struct. 2008, 890, 255‒262.  doi: 10.1016/j.molstruc.2008.04.044

    35. [35]

      Herrera, J. M.; Bleuzen, A.; Dromzee, Y.; Julve, M.; Lloret, F.; Verdaguer, M. Crystal structures and magnetic properties of two octacyanotungstate(IV) and (V)-cobalt(II) three-dimensional bimetallic frameworks. Inorg. Chem. 2003, 42, 7052‒7059.  doi: 10.1021/ic034188+

    36. [36]

      Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Magnetic properties of six-coordinated high-spin cobalt(II) complexes: theoretical background and its application. Inorganica. Chimica. Acta 2008, 361, 3432‒3445.  doi: 10.1016/j.ica.2008.03.114

    37. [37]

      Berlinguette, C. P.; Dragulescu-Andrasi, A.; Sieber, A.; Gudel, H. U.; Achim, C.; Dunbar, K. R. A charge-transfer-induced spin transition in the discrete cyanide-bridged complex [Co(tmphen)2]3[Fe(CN)6]2]. J. Am. Chem. Soc. 2005, 127, 6766‒6779.  doi: 10.1021/ja043162u

    38. [38]

      Alvarez, S.; Lpez, C.; Bermejo, M. J. C–N stretching force constants in cyano complexes: general trends for polycyano, mixed-ligand and cyano-bridged complexes transition. Met. Chem. 1984, 9, 123‒126.  doi: 10.1007/BF00935925

    39. [39]

      Bignozzi, C. A.; Argazzi, R.; Schoonover, J. R.; Gordon, K. C.; Dyer, R. B.; Scandola, F. Electronic coupling in cyano-bridged ruthenium polypyridine complexes and role of electronic effects on cyanide stretching frequencies. Inorg. Chem. 1992, 31, 5260‒5267.  doi: 10.1021/ic00051a018

    40. [40]

      Dows, D. A.; Haim, A.; Wilmarth, W. K. Infra-red spectroscopic detection of bridging cyanide groups. J. Inorg. Nucl. Chem. 1961, 21, 33‒37.  doi: 10.1016/0022-1902(61)80408-9

    41. [41]

      Halcrow, M. The effect of ligand design on metal ion spin state-lessons from spin crossover complexes. Crystals 2016, 6, 58‒78.  doi: 10.3390/cryst6050058

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    3. [3]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    4. [4]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    5. [5]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    10. [10]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    11. [11]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    12. [12]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    13. [13]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    18. [18]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    19. [19]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    20. [20]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

Metrics
  • PDF Downloads(2)
  • Abstract views(325)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return