Citation: Zhi-Zhuan ZHANG, Jian-Ce JIN, Liao-Kuo GONG, Ke-Zhao DU, Xiao-Ying HUANG. Two New Antimony(III) Chloride Hybrids Composed of Mononuclear [SbCl6]3- Unit and Ionic Liquid Cations with Different Length of Alkyl Chain[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1183-1193. doi: 10.14102/j.cnki.0254–5861.2011–3099 shu

Two New Antimony(III) Chloride Hybrids Composed of Mononuclear [SbCl6]3- Unit and Ionic Liquid Cations with Different Length of Alkyl Chain

  • Corresponding author: Liao-Kuo GONG, lkgong@fjirsm.ac.cn Xiao-Ying HUANG, xyhuang@fjirsm.ac.cn
  • Received Date: 17 January 2021
    Accepted Date: 28 January 2021

    Fund Project: the National Natural Science Foundation of China 21671187the Natural Science Foundation of Fujian Province 2020J01118

Figures(5)

  • Two new hybrid chloroantimonates, namely, [Prmim]3SbCl6 (1, Prmim = 1-propyl-3-methylimi-dazolium) and [Hmim]3SbCl6 (2, Hmim = 1-hexyl-3-methylimidazolium), were synthesized in ionic liquids (ILs) with the yields of 97% and 72%, respectively. Single-crystal X-ray diffraction (SCXRD) study reveals that 1 crystallizes in monoclinic, space group Pn with a = 15.2988(12), b = 13.6388(10), c = 15.6761(13) Å, β = 98.677(7)°, V = 3233.5(4) Å3, Z = 4, Dc = 1.459 g·cm-3, F(000) = 1440, μ = 1.370 mm-1, R = 0.0589 and wR = 0.1366 (I > 2σ(I)); 2 crystallizes in the hexagonal space group of P63 with a = 27.7471(6), b = 27.7471(6), c = 8.9811(2) Å, V = 5988.2(3) Å3, Z = 6, Dc = 1.391 g·cm-3, F(000) = 2592, μ = 1.121 mm-1, R = 0.0420 and wR = 0.0726 (I > 2σ(I)). The photophysical properties of the title compounds were studied by solid-state optical absorption, photoluminescent excitation/emission (PLE/PL), PL decay spectra and photoluminescent quantum yield (PLQY). 1 and 2 exhibit PL peaks at 627 and 607 nm, Stokes shifts of 257 and 242 nm, and PLQY of 32.5% and 49.2%, respectively. The distinct photo physical characteristics of 1 and 2 are highly related to the distortion extent of the [SbCl6]3- unit.
  • 加载中
    1. [1]

      Gautier, R.; Massuyeau, F.; Galnon, G.; Paris, M. Lead halide post-perovskite-type chains for high-efficiency white-light emission. Adv. Mater. 2019, 31, 1807383−6.  doi: 10.1002/adma.201807383

    2. [2]

      Gong, L. K.; Hu, Q. Q.; Huang, F. Q.; Zhang, Z. Z.; Shen, N. N.; Hu, B.; Song, Y.; Wang, Z. P.; Du, K. Z.; Huang, X. Y. Efficient modulation of photoluminescence by hydrogen bonding interactions between inorganic [MnBr4]2- anions and organic cations. Chem. Commun. 2019, 55, 7303−7306.  doi: 10.1039/C9CC03038G

    3. [3]

      Lin, H. R.; Zhou, C. K.; Tian, Y.; Siegrist, T.; Ma, B. W. Low-dimensional organometal halide perovskites. ACS Energy Lett. 2017, 3, 54−62.

    4. [4]

      Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M. Low-dimensional-networked metal halide perovskites: the next big thing. ACS Energy Lett. 2017, 2, 889−896.  doi: 10.1021/acsenergylett.6b00705

    5. [5]

      Shen, N. N.; Wang, Z. P.; Jin, J. C.; Gong, L. K.; Zhang, Z. Z.; Huang, X. Y. Phase transitions and photoluminescence switching in hybrid antimony(III) and bismuth(III) halides. CrystEngComm. 2020, 22, 3395−3405.  doi: 10.1039/D0CE00057D

    6. [6]

      Tsai, H. H.; Nie, W. Y.; Blancon, J. C.; Toumpos, C. S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312−316.  doi: 10.1038/nature18306

    7. [7]

      Worku, M.; Tian, Y.; Zhou, C. K.; Lee, S.; Meisner, Q.; Zhou, Y.; Ma, B. W. Sunlike white-light-emitting diodes based on zero-dimensional organic metal halide hybrids. ACS Appl. Mater. Interfaces 2018, 10, 30051−30057.  doi: 10.1021/acsami.8b12474

    8. [8]

      Xuan, T. T.; Xie, R. J. Recent processes on light-emitting lead-free metal halide perovskites. Chem. Eng. J. 2020, 393, 124757−20.  doi: 10.1016/j.cej.2020.124757

    9. [9]

      Zhou, C. K.; Lin, H. R.; He, Q. Q.; Xu, L. J.; Worku, M.; Chaaban, M.; Lee, S. J.; Shi, X. Q.; Du, M. H.; Ma, B. W. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R 2019, 137, 38−65.  doi: 10.1016/j.mser.2018.12.001

    10. [10]

      Zhou, C. K.; Lin, H. R.; Lee, S. J.; Chaaban, M.; Ma, B. W. Organic-inorganic metal halide hybrids beyond perovskites. Mater. Res. Lett. 2018, 6, 552−569.  doi: 10.1080/21663831.2018.1500951

    11. [11]

      Li, M. Z.; Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021DOI: 10.1039/d0cs00779j.

    12. [12]

      Wang, X. M.; Meng, W. W.; Liao, W. Q.; Wang, J. B.; Xiong, R. G.; Yan, Y. F. Atomistic mechanism of broadband emission in metal halide perovskites. J. Phys. Chem. Lett. 2019, 10, 501−506.  doi: 10.1021/acs.jpclett.8b03717

    13. [13]

      Zhou, C. K.; Xu, L. J.; Lee, S. J.; Lin, H. R.; Ma, B. W. Recent advances in luminescent zero-dimensional organic metal halide hybrids. Adv. Opt. Mater. 2020, 2001766−17.

    14. [14]

      Zhou, G. J.; Su, B. B.; Huang, J. L.; Zhang, Q. Y.; Xia, Z. G. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Mater. Sci. Eng. R 2020, 141, 100548−21.  doi: 10.1016/j.mser.2020.100548

    15. [15]

      Benin, B. M.; Dirin, D. N.; Morad, V.; Worle, M.; Yakunin, S.; Raino, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem. Int. Ed. 2018, 57, 11329−11333.  doi: 10.1002/anie.201806452

    16. [16]

      Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 2014, 136, 13154−13157.  doi: 10.1021/ja507086b

    17. [17]

      Fu, P. F.; Huang, M. L.; Shang, Y. Q.; Yu, N.; Zhou, H. L.; Zhang, Y. B.; Chen, S. Y.; Gong, J. K.; Ning, Z. J. Organic-inorganic layered and hollow tin bromide perovskite with tunable broadband Emission. ACS Appl. Mater. Interfaces 2018, 10, 34363−34369.  doi: 10.1021/acsami.8b07673

    18. [18]

      Kshirsagar, A. S.; Nag, A. Synthesis and optical properties of colloidal Cs2AgSb1-xBixCl6 double perovskite nanocrystals. J. Chem. Phys. 2019, 151, 161101−6.  doi: 10.1063/1.5127971

    19. [19]

      Mao, L. L.; Guo, P. J.; Kepenekian, M.; Hadar, I.; Katan, C.; Even, J.; Schaller, R. D.; Stoumpos, C. C.; Kanatzidis, M. G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J. Am. Chem. Soc. 2018, 140, 13078−13088.  doi: 10.1021/jacs.8b08691

    20. [20]

      Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R. D.; Kovalenko, M. V. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J. Am. Chem. Soc. 2019, 141, 9764−9768.  doi: 10.1021/jacs.9b02365

    21. [21]

      Song, G. M.; Li, M. Z.; Yang, Y.; Liang, F.; Huang, Q.; Liu, X. M.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. J. Phys. Chem. Lett. 2020, 11, 1808−1813.  doi: 10.1021/acs.jpclett.0c00096

    22. [22]

      Su, B. B.; Song, G. M.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 2020, 58, 9962−9968.

    23. [23]

      Tan, Z. F.; Li, J. H.; Zhang, C.; Li, Z.; Hu, Q. S.; Xiao, Z. W.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; Cheng, Y.; Tang, J. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 2018 1801131−10.

    24. [24]

      Yangui, A.; Roccanova, R.; Wu, Y.; Du, M. H.; Saparov, B. Highly efficient broad-band luminescence involving organic and inorganic molecules in a zero-dimensional hybrid lead chloride. J. Phys. Chem. C 2019, 123, 22470−22477.  doi: 10.1021/acs.jpcc.9b05509

    25. [25]

      Zhao, Y.; Zhou, C. K.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J. C.; Van De Burgt, L. J.; Kountouriotis, K.; Xin, Y.; Holt, E.; Schanze, K.; Clark, R.; Siegrist, T.; Ma, B. W. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 2017, 8, 14051−7.  doi: 10.1038/ncomms14051

    26. [26]

      Zhang, R. L.; Mao, X.; Yang, Y.; Yang, S. Q.; Zhao, W. Y.; Wumaier, T.; Wei, D. H.; Deng, W. Q.; Han, K. L. Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission. Angew. Chem. Int. Ed. 2019, 58, 2725−2729.  doi: 10.1002/anie.201812865

    27. [27]

      Zhou, C. K.; Lin, H. R.; Neu, J.; Zhou, Y.; Chaaban, M.; Lee, S. J.; Worku, M.; Chen, B. H.; Clark, R.; Cheng, W. H.; Guan, J. J.; Djurovich, P.; Zhang, D. Z.; Lü, X. J.; Bullock, J.; Pak, C.; Shatruk, M.; Du, M. H.; Siegrist, T.; Ma, B. W. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency. ACS Energy Lett. 2019, 4, 1579−1583.  doi: 10.1021/acsenergylett.9b00991

    28. [28]

      Zhou, C. K.; Lin, H. R.; Shi, H. L.; Tian, Y.; Pak, C.; Shatruk, M.; Zhou, Y.; Djurovich, P.; Du, M. H.; Ma, B. W. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew. Chem. Int. Ed. 2017, 57, 1021−1024.

    29. [29]

      Zhou, C. K.; Lin, H. R.; Worku, M.; Neu, J.; Zhou, Y.; Tian, Y.; Lee, S. J.; Djurovich, P.; Siegrist, T.; Ma, B. W. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc. 2018, 140, 13181−13184.  doi: 10.1021/jacs.8b07731

    30. [30]

      Zhou, C. K.; Tian, Y.; Wang, M. C.; Rose, A.; Besara, T.; Doyle, N. K.; Yuan, Z.; Wang, J. C.; Clark, R.; Hu, Y. Y.; Siegrist, T.; Lin, S. C.; Ma, B. W. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 2017, 56, 9018−9022.  doi: 10.1002/anie.201702825

    31. [31]

      Li, Z. Y.; Li, Y.; Liang, P.; Zhou, T. L.; Wang, L.; Xie, R. J. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 2019, 31, 9363−9371.  doi: 10.1021/acs.chemmater.9b02935

    32. [32]

      Elleuch, N.; Lhoste, J.; Boujelbene, M. Characterization, Hirshfeld surface analysis and vibrational properties of 2, 6-diaminopurinium chloride tetrachloroantimonates(III) monohydrate (C5H8N6)[SbCl4]Cl∙H2O. J. Mol. Struct. 2020, 1217, 128386−11.  doi: 10.1016/j.molstruc.2020.128386

    33. [33]

      He, Q. Q.; Zhou, C. K.; Xu, L. J.; Lee, S. J.; Lin, X. S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633−638.  doi: 10.1021/acsmaterialslett.0c00133

    34. [34]

      Morad, V.; Yakunin, S.; Kovalenko, M. V. Supramolecular approach for fine-tuning of the bright luminescence from zero-dimensional antimony(III) halides. ACS Mater. Lett. 2020, 2, 845−852.  doi: 10.1021/acsmaterialslett.0c00174

    35. [35]

      Sedakova, T. V.; Mirochnik, A. G. Luminescence of antimony(III) halogenides complexes with 2-and 4-benzylpyridine. Russ. J. Phys. Chem. A 2017, 91, 791−795.  doi: 10.1134/S0036024417030256

    36. [36]

      Song, G. M.; Li, M. Z.; Zhang, S. Z.; Wang, N. Z.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules. Adv. Funct. Mater. 2020, 30, 2002468−6.  doi: 10.1002/adfm.202002468

    37. [37]

      Wang, Z. P.; Xie, D. L.; Zhang, F.; Yu, J. B.; Chen, X. P.; Wong, C. P. Controlling information duration on rewritable luminescent paper based on hybrid antimony(III) chloride/small-molecule absorbates. Sci. Adv. 2020, 6, eabc2181−10.  doi: 10.1126/sciadv.abc2181

    38. [38]

      Wang, Z. P.; Zhang, Z. Z.; Tao, L. Q.; Shen, N. N.; Hu, B.; Gong, L. K.; Li, J. R.; Chen, X. P.; Huang, X. Y. Hybrid chloroantimonates(III): thermally induced triple-mode reversible luminescent switching and laser-printable rewritable luminescent paper. Angew. Chem. Int. Ed. 2019, 58, 9974−9978.  doi: 10.1002/anie.201903945

    39. [39]

      Wang, Z. P.; Wang, J. Y.; Li, J. R.; Feng, M. L.; Zou, G. D.; Huang, X. Y. [Bmim]2SbCl5: a main group metal-containing ionic liquid exhibiting tunable photoluminescence and white-light emission. Chem. Commun. 2015, 51, 3094−3097.  doi: 10.1039/C4CC08825E

    40. [40]

      Zhou, C. K.; Lin, H. R.; Tian, Y.; Yuan, Z.; Clark, R.; Chen, B. H.; Van De Burgt, L. J.; Wang, J. C.; Zhou, Y.; Hanson, K.; Meisner, Q. J.; Neu, J.; Besara, T.; Siegrist, T.; Lambers, E.; Djurovich, P.; Ma, B. W. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 2018, 9, 586−593.  doi: 10.1039/C7SC04539E

    41. [41]

      Zhou, C. K.; Worku, M.; Neu, J.; Lin, H. R.; Tian, Y.; Lee, S. J.; Zhou, Y.; Han, D.; Chen, S. Y.; Hao, A.; Djurovich, P. I.; Siegrist, T.; Du, M. H.; Ma, B. W. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chem. Mater. 2018, 30, 2374−2378.  doi: 10.1021/acs.chemmater.8b00129

    42. [42]

      Biswas, A.; Bakthavatsalam, R.; Mali, B. P.; Bahadur, V.; Biswas, C.; Raavi, S. S. K.; Gonnade, R. G.; Kundu, J. The metal halide structure and the extent of distortion control the photo-physical properties of luminescent zero dimensional organic-antimony(III) halide hybrids. J. Mater. Chem. C 2021, 9, 348−358.  doi: 10.1039/D0TC03440A

    43. [43]

      Chen, F.; Wang, S.; Li, Y. H.; Huang, W. Effects of anionic geometries on hydrogen-bonding networks of 1-(4-pyridyl) piperazine. J. Chem. Crystallogr. 2016, 46, 309−323.  doi: 10.1007/s10870-016-0662-y

    44. [44]

      Wojciechowska, M.; Szklarz, P.; Bialonska, A.; Baran, J.; Janicki, R.; Medycki, W.; Durlak, P.; Piecha-Bisiorek, A.; Jakubas, R. Enormous lattice distortion through an isomorphous phase transition in an organic-inorganic hybrid based on haloantimonate(III). CrystEngComm. 2016, 18, 6184−6194.  doi: 10.1039/C6CE01008C

    45. [45]

      Parmar, S.; Pal, S.; Biswas, A.; Gosavi, S.; Chakraborty, S.; Reddy, M. C.; Ogale, S. Designing a new family of oxonium-cation based structurally diverse organic-inorganic hybrid iodoantimonate crystals. Chem. Commun. 2019, 55, 7562−7565.  doi: 10.1039/C9CC03485D

    46. [46]

      Wojtas, M.; Jakubas, R.; Ciunik, Z.; Medycki, W. Structure and phase transitions in [(CH3)4P]3Sb2Br9 and [(CH3)4P]3Bi2Br9. J. Solid State Chem. 2004, 177, 1575−1584.  doi: 10.1016/j.jssc.2003.12.011

    47. [47]

      Benin, B. M.; Mccall, K. M.; Worle, M.; Morad, V.; Aebli, M.; Yakunin, S.; Shynkarenko, Y.; Kovalenko, M. V. The Rb7Bi3-3xSb3xCl16 family: a fully inorganic solid solution with room-temperature luminescent members. Angew. Chem. Int. Ed. 2020, 59, 14490−14497.  doi: 10.1002/anie.202003822

    48. [48]

      Plecha, A.; Pietraszko, A.; Bator, G.; Jakubas, R. Structural characterization and ferroelectric ordering in (C3N2H5)5Sb2Br11. J. Solid State Chem. 2008, 181, 1155−1166.  doi: 10.1016/j.jssc.2008.02.029

    49. [49]

      Ma, Z.; Yu, J. H.; Dai, S. Preparation of inorganic materials using ionic liquids. Adv. Mater. 2010, 22, 261−285.  doi: 10.1002/adma.200900603

    50. [50]

      Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A-Gen. 2010, 373, 1−56.  doi: 10.1016/j.apcata.2009.10.008

    51. [51]

      Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123−150.  doi: 10.1039/B006677J

    52. [52]

      Zhang, S. G.; Zhang, Q. H.; Zhang, Y.; Chen, Z. J.; Watanabe, M.; Deng, Y. Q. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80−124.  doi: 10.1016/j.pmatsci.2015.10.001

    53. [53]

      Li, H. R.; Liu, P.; Shao, H. F.; Wang, Y. G.; Zheng, Y. X.; Sun, Z.; Chen, Y. H. Green synthesis of luminescent soft materials derived from task-specific ionic liquid for solubilizing lanthanide oxides and organic ligand. J. Mater. Chem. 2009, 19, 5533−5540.  doi: 10.1039/b902663k

    54. [54]

      Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 2010, 22, 1196−1221.  doi: 10.1002/adma.200902184

    55. [55]

      Ichikawa, T.; Kato, T.; Ohno, H. Dimension control of ionic liquids. Chem. Commun. 2019, 55, 8205−8214.  doi: 10.1039/C9CC04280F

    56. [56]

      Wendlandt, W. M.; Hecht, H. G. Reflectance Spectroscopy. Interscience, New York 1966.

    57. [57]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3−8.

    58. [58]

      Vogler, A.; Nikol, H. Photochemistry and photophysics of coordination compounds of the main group metals. Pure Appl. Chem. 1992, 64, 1311−1317.  doi: 10.1351/pac199264091311

    59. [59]

      Nikol, H.; Vogler, A. Photoluminescence of antimony(III) and bismuth(III) complexes in solution. J. Am. Chem. Soc. 1991, 113, 8988−8990.  doi: 10.1021/ja00023a081

    60. [60]

      Vogler, A.; Nikol, H. The structures of s2 metal complexes in the ground and sp excited states. Comments Inorg. Chem. 1993, 14, 245−261.  doi: 10.1080/02603599308048663

    61. [61]

      Robinson, K.; Gibbs, G. V.; Ribbe, P. H. Quadriatic elongation-quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567−570.  doi: 10.1126/science.172.3983.567

    62. [62]

      Yin, J. L.; Zhang, G. Y.; Peng, C. D.; Fei, H. H. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chem. Commun. 2019, 55, 1702−1705.  doi: 10.1039/C8CC08726A

    63. [63]

      Zhou, L.; Liao, J. F.; Huang, Z. G.; Wei, J. H.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal. Angew. Chem. Int. Ed. 2019, 58, 15435−15440.  doi: 10.1002/anie.201907503

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    3. [3]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    4. [4]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    5. [5]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    6. [6]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    7. [7]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    8. [8]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    9. [9]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    10. [10]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    11. [11]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    12. [12]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    13. [13]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    14. [14]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    15. [15]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    16. [16]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    17. [17]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    18. [18]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    19. [19]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    20. [20]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

Metrics
  • PDF Downloads(2)
  • Abstract views(316)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return