Citation: Yun-Zhu LIU, Xiao-Na LI, Sheng-Gui HE. Activation of Carbon Dioxide by Gas-phase Metal Species[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1385-1403. doi: 10.14102/j.cnki.0254–5861.2011–3081 shu

Activation of Carbon Dioxide by Gas-phase Metal Species

  • Corresponding author: Xiao-Na LI, lxn@iccas.ac.cn
  • Received Date: 28 December 2020
    Accepted Date: 23 February 2021

    Fund Project: the National Natural Science Foundation of China 22022308the National Natural Science Foundation of China 21773254the K. C. Wong Education Foundation, and the Youth Innovation Promotion Association CAS 2016030

Figures(9)

  • Catalytic conversion of carbon dioxide (CO2) into value-added chemicals is an important and active field in both of the condensed-phase and gas-phase studies. This mini-review summarizes a variety of experimentally identified reactions in the activation and transformation of CO2 by metal species in the gas phase. The use of advanced mass spectrometric instrumentation in conjunction with quantum chemistry calculations can uncover the mechanistic details and determine the vital factors that control the activation of CO2. This review focuses mainly on three topics: the activation of CO2 by (1) bare metal ions and metal oxide species, (2) metal hydrides, and (3) other gas-phase metal species. Emphasis is placed on the latest advances in the hydrogenation of CO2 mediated with metal hydrides. A potential prospect toward the future effort in the activation and transformation of CO2 in gas phase has also been discussed.
  • 加载中
    1. [1]

      Franco, F.; Rettenmaier, C.; Jeon, H. S.; Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884−6946.  doi: 10.1039/D0CS00835D

    2. [2]

      Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J.; Zhao, D.; AlBahily, K.; Vinu, A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020, 49, 4360−4404.  doi: 10.1039/D0CS00075B

    3. [3]

      Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984−8034.  doi: 10.1021/acs.chemrev.9b00723

    4. [4]

      Su, X.; Yang, X. F.; Huang, Y.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656−664.  doi: 10.1021/acs.accounts.8b00478

    5. [5]

      Mou, L. H.; Jiang, G. D.; Li, Z. Y.; He, S. G. Activation of dinitrogen by gas-phase species. Chin. J. Chem. Phys. 2020, 33, 507−520.  doi: 10.1063/1674-0068/cjcp2008141

    6. [6]

      Wang, L. N.; Li, X. N.; He, S. G. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters. Sci. China Mater. 2020, 63, 892−902.  doi: 10.1007/s40843-019-1206-2

    7. [7]

      Li, X. N.; Wang, L. N.; Mou, L. H.; He, S. G. Catalytic CO oxidation by gas-phase metal oxide clusters. J. Phys. Chem. A 2019, 123, 9257−9267.  doi: 10.1021/acs.jpca.9b05185

    8. [8]

      Zhao, Y. X.; Li, Z. Y.; Yang, Y.; He, S. G. Methane activation by gas phase atomic clusters. Acc. Chem. Res. 2018, 51, 2603−2610.  doi: 10.1021/acs.accounts.8b00403

    9. [9]

      Schwarz, H. Single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 2017, 7, 4302−4314.  doi: 10.1039/C6CY02658C

    10. [10]

      Chi, C.; Qu, H.; Meng, L.; Kong, F.; Luo, M.; Zhou, M. CO oxidation by group 3 metal monoxide cations supported on [Fe(CO)4]2−. Angew. Chem. Int. Ed. 2017, 56, 14096−14101.  doi: 10.1002/anie.201707898

    11. [11]

      Zavras, A.; Khairallah, G. N.; Krstić, M.; Girod, M.; Daly, S.; Antoine, R.; Maitre, P.; Mulder, R. J.; Alexander, S. A.; Bonačić-Koutecký, V.; Dugourd, P.; O'Hair, R. A. J. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid. Nat. Commun. 2016, 7, 11746−8.  doi: 10.1038/ncomms11746

    12. [12]

      Harding, D. J.; Fielicke, A. Platinum group metal clusters: from gas-phase structures and reactivities towards model catalysts. Chem. Eur. J. 2014, 20, 3258−3267.  doi: 10.1002/chem.201304586

    13. [13]

      Lang, S. M.; Bernhardt, T. M. Gas phase metal cluster model systems for heterogeneous catalysis. Phys. Chem. Chem. Phys. 2012, 14, 9255−9269.  doi: 10.1039/c2cp40660h

    14. [14]

      Yin, S.; Bernstein, E. R. Gas phase chemistry of neutral metal clusters: distribution, reactivity and catalysis. Int. J. Mass Spectrom. 2012, 321–322, 49−65.

    15. [15]

      Roach, P. J.; Woodward, W. H.; Castleman, A. W.; Reber, A. C.; Khanna, S. N. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science 2009, 323, 492−495.  doi: 10.1126/science.1165884

    16. [16]

      Burgert, R.; Schnöckel, H.; Grubisic, A.; Li, X.; Stokes, S. T.; Bowen, K. H.; Ganteför, G. F.; Kiran, B.; Jena, P. Spin conservation accounts for aluminum cluster anion reactivity pattern with O2. Science 2008, 319, 438−442.  doi: 10.1126/science.1148643

    17. [17]

      Schwarz, H. Metal-mediated activation of carbon dioxide in the gas phase: mechanistic insight derived from a combined experimental/computational approach. Coord. Chem. Rev. 2017, 334, 112−123.  doi: 10.1016/j.ccr.2016.03.009

    18. [18]

      Wang, M.; Sun, C.; Cui, J.; Zhang, Y.; Ma, J. Clean and efficient transformation of CO2 to isocyanic acid: the important role of triatomic cation ScNH+. J. Phys. Chem. A 2019, 123, 5762−5767.  doi: 10.1021/acs.jpca.9b02133

    19. [19]

      Firouzbakht, M.; Rijs, N. J.; Schlangen, M.; Kaupp, M.; Schwarz, H. Ligand effects on the reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) towards CO2: gas-phase generation of the elusive cyanoformate by [Co(CN)]+ and [Fe(CN)]+. Top. Catal. 2018, 61, 575−584.  doi: 10.1007/s11244-018-0903-8

    20. [20]

      Zhou, H. Y.; Wang, M.; Ding, Y. Q.; Ma, J. B. Nb2BN2 cluster anions reduce four carbon dioxide molecules: reactivity enhancement by ligands. Dalton Trans. 2020, 49, 14081−14087.  doi: 10.1039/D0DT02680H

    21. [21]

      Koyanagi, G. K.; Bohme, D. K. Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 2006, 110, 1232−1241.  doi: 10.1021/jp0526602

    22. [22]

      Cheng, P.; Koyanagi, G. K.; Bohme, D. K. Gas-phase reactions of atomic lanthanide cations with CO2 and CS2: room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 2006, 110, 12832−12838.  doi: 10.1021/jp0637431

    23. [23]

      Li, J.; Geng, C.; Weiske, T.; Schwarz, H. Counter-intuitive gas-phase reactivities of [V2]+ and [V2O]+ towards CO2 reduction: insight from electronic structure calculations. Angew. Chem. Int. Ed. 2020, 59, 12308−12314.  doi: 10.1002/anie.202001223

    24. [24]

      Goeppert, A.; Czaun, M.; Jones, J. P.; Surya Prakash, G. K.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995−8048.  doi: 10.1039/C4CS00122B

    25. [25]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703−3727.  doi: 10.1039/c1cs15008a

    26. [26]

      Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. Rsc Adv. 2018, 8, 7651−7669.  doi: 10.1039/C7RA13546G

    27. [27]

      Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804−9838.  doi: 10.1021/acs.chemrev.6b00816

    28. [28]

      Kato, S.; Matam, S. K.; Kerger, P.; Bernard, L.; Battaglia, C.; Vogel, D.; Rohwerder, M.; Züttel, A. The origin of the catalytic activity of a metal hydride in CO2 reduction. Angew. Chem. Int. Ed. 2016, 55, 6028−6032.  doi: 10.1002/anie.201601402

    29. [29]

      Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem. Int. Ed. 2011, 50, 12551−12554.  doi: 10.1002/anie.201105481

    30. [30]

      Tang, S. Y.; Rijs, N. J.; Li, J.; Schlangen, M.; Schwarz, H. Ligand-controlled CO2 activation mediated by cationic titanium hydride complexes, [LTiH]+ (L = Cp2, O). Chem. Eur. J. 2015, 21, 8483−8490.  doi: 10.1002/chem.201500722

    31. [31]

      Zavras, A.; Ghari, H.; Ariafard, A.; Canty, A. J.; O'Hair, R. A. J. Gas-phase ion-molecule reactions of copper hydride anions [CuH2] and [Cu2H3]. Inorg. Chem. 2017, 56, 2387−2399.  doi: 10.1021/acs.inorgchem.6b02145

    32. [32]

      Zhang, X.; Liu, G.; Meiwes-Broer, K. H.; Ganteför, G.; Bowen, K. CO2 activation and hydrogenation by PtHn cluster anions. Angew. Chem. Int. Ed. 2016, 55, 9644−9647.  doi: 10.1002/anie.201604308

    33. [33]

      Jiang, L. X.; Zhao, C.; Li, X. N.; Chen, H.; He, S. G. Formation of gas-phase formate in thermal reactions of carbon dioxide with diatomic iron hydride anions. Angew. Chem. Int. Ed. 2017, 56, 4187−4191.  doi: 10.1002/anie.201611483

    34. [34]

      Jiang, L. X.; Li, X. N.; He, S. G. Metal-dependent selectivity on the reactions of carbon dioxide with diatomic hydride anions MH (M = Co, Ni, and Cu). J. Phys. Chem. C 2020, 124, 5928−5933.  doi: 10.1021/acs.jpcc.9b11619

    35. [35]

      Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed. 2011, 50, 8510−8537.  doi: 10.1002/anie.201102010

    36. [36]

      Musashi, Y.; Sakaki, S. Theoretical study of ruthenium-catalyzed hydrogenation of carbon dioxide into formic acid. Reaction mechanism involving a new type of σ-bond metathesis. J. Am. Chem. Soc. 2000, 122, 3867−3877.  doi: 10.1021/ja9938027

    37. [37]

      Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew. Chem. Int. Ed. 2011, 50, 9948−9952.  doi: 10.1002/anie.201104542

    38. [38]

      Yang, X.; Hall, M. B. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe−Hδ···Hδ+−O, bond and methenyl-H4MPT+ triggered hydride transfer. J. Am. Chem. Soc. 2009, 131, 10901−10908.  doi: 10.1021/ja902689n

    39. [39]

      Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215−221.  doi: 10.1016/0022-1902(61)80142-5

    40. [40]

      Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; Yao, S.; Xie, J.; Li, Y.; Liu, X.; Ma, D. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew. Chem. Int. Ed. 2017, 56, 10761−10765.  doi: 10.1002/anie.201705002

    41. [41]

      Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076−3084.  doi: 10.1021/ja5128133

    42. [42]

      Schultz, R. H.; Armentrout, P. B. The gas-phase thermochemistry of FeH. J. Chem. Phys. 1991, 94, 2262−2268.  doi: 10.1063/1.459897

    43. [43]

      Mccarthy, M. C.; Field, R. W.; Engleman, R.; Bernath, P. F. Laser and Fourier transform spectroscopy of PtH and PtD. J. Mol. Spectrosc. 1993, 158, 208−236.  doi: 10.1006/jmsp.1993.1067

    44. [44]

      Chen, Y. M.; Clemmer, D. E.; Armentrout, P. B. The gas-phase thermochemistry of TiH. J. Chem. Phys. 1991, 95, 1228−1233.

    45. [45]

      Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739−9754.  doi: 10.1021/jacs.7b05362

    46. [46]

      Zhao, B.; Yan, B.; Jiang, Z.; Yao, S.; Liu, Z.; Wu, Q.; Ran, R.; Senanayake, S. D.; Weng, D.; Chen, J. G. High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite. Chem. Commun. 2018, 54, 7354−7357.  doi: 10.1039/C8CC03829E

    47. [47]

      Yoo, C.; Kim, Y. E.; Lee, Y. Selective transformation of CO2 to CO at a single nickel center. Acc. Chem. Res. 2018, 51, 1144−1152.  doi: 10.1021/acs.accounts.7b00634

    48. [48]

      Hicken, A.; White, A. J. P.; Crimmin, M. R. Selective reduction of CO2 to a formate equivalent with heterobimetallic gold···copper hydride complexes. Angew. Chem. Int. Ed. 2017, 56, 15127−15130.  doi: 10.1002/anie.201709072

    49. [49]

      Sirijaraensre, J.; Limtrakul, J. Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: a DFT study. Appl. Surf. Sci. 2016, 364, 241−248.  doi: 10.1016/j.apsusc.2015.12.117

    50. [50]

      Zall, C. M.; Linehan, J. C.; Appel, A. M. A molecular copper catalyst for hydrogenation of CO2 to formate. ACS Catal. 2015, 5, 5301−5305.  doi: 10.1021/acscatal.5b01646

    51. [51]

      Lee, Y.; Anderton, K. J.; Sloane, F. T.; Ermert, D. M.; Abboud, K. A.; García-Serres, R.; Murray, L. J. Reactivity of hydride bridges in high-spin [3M-3(μ-H)] clusters (M = FeII, CoII). J. Am. Chem. Soc. 2015, 137, 10610−10617.  doi: 10.1021/jacs.5b05204

    52. [52]

      Yu, Y.; Sadique, A. R.; Smith, J. M.; Dugan, T. R.; Cowley, R. E.; Brennessel, W. W.; Flaschenriem, C. J.; Bill, E.; Cundari, T. R.; Holland, P. L. The reactivity patterns of low-coordinate iron-hydride complexes. J. Am. Chem. Soc. 2008, 130, 6624−6638.  doi: 10.1021/ja710669w

    53. [53]

      Liu, Y. Z.; Jiang, L. X.; Li, X. N.; Wang, L. N.; Chen, J. J.; He, S. G. Gas-phase reactions of carbon dioxide with copper hydride anions Cu2H2: temperature-dependent transformation. J. Phys. Chem. C 2018, 122, 19379−19384.  doi: 10.1021/acs.jpcc.8b05216

    54. [54]

      Liu, Y. Z.; Li, X. N.; He, S. G. Reactivity of iron hydride anions Fe2Hn (n = 0~3) with carbon dioxide. J. Phys. Chem. A 2020, 124, 8414−8420.  doi: 10.1021/acs.jpca.0c06986

    55. [55]

      Kunkel, C.; Viñes, F.; Illas, F. Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ. Sci. 2016, 9, 141−144.  doi: 10.1039/C5EE03649F

    56. [56]

      Posada-Pérez, S.; Viñes, F.; Ramirez, P. J.; Vidal, A. B.; Rodriguez, J. A.; Illas, F. The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys. Chem. Chem. Phys. 2014, 16, 14912−14921.  doi: 10.1039/C4CP01943A

    57. [57]

      Liu, G.; Poths, P.; Zhang, X.; Zhu, Z.; Marshall, M.; Blankenhorn, M.; Alexandrova, A. N.; Bowen, K. H. CO2 hdrogenation to formate and formic acid by bimetallic palladium-copper hydride clusters. J. Am. Chem. Soc. 2020, 142, 7930−7936.  doi: 10.1021/jacs.0c01855

    58. [58]

      Wu, J.; Wang, L.; Lv, B.; Chen, J. Facile fabrication of BCN nanosheet-encapsulated nano-iron as highly stable Fischer-Tropsch synthesis catalyst. ACS Appl. Mater. Interfaces 2017, 9, 14319−14327.  doi: 10.1021/acsami.7b00561

    59. [59]

      Sun, W.; Meng, Y.; Fu, Q.; Wang, F.; Wang, G.; Gao, W.; Huang, X.; Lu, F. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces 2016, 8, 9881−9888.  doi: 10.1021/acsami.6b01008

    60. [60]

      Lin, S.; Ye, X.; Johnson, R. S.; Guo, H. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation. J. Phys. Chem. C 2013, 117, 17319−17326.  doi: 10.1021/jp4055445

    61. [61]

      Zhao, Y. X.; Yang, B.; Li, H. F.; Zhang, Y.; Yang, Y.; Liu, Q. Y.; Xu, H. G.; Zheng, W. J.; He, S. G. Photoassisted selective steam and dry reforming of methane to syngas catalyzed by rhodium-vanadium bimetallic oxide cluster anions at room temperature. Angew. Chem. Int. Ed. 2020, 59, 21216−21223.  doi: 10.1002/anie.202010026

    62. [62]

      Yang, Y.; Yang, B.; Zhao, Y. X.; Jiang, L. X.; Li, Z. Y.; Ren, Y.; Xu, H. G.; Zheng, W. J.; He, S. G. Direct conversion of methane with carbon dioxide mediated by RhVO3 cluster anions. Angew. Chem. Int. Ed. 2019, 58, 17287−17292.  doi: 10.1002/anie.201911195

    63. [63]

      Chen, Q.; Zhao, Y. X.; Jiang, L. X.; Chen, J. J.; He, S. G. Coupling of methane and carbon dioxide mediated by diatomic copper boride cations. Angew. Chem. Int. Ed. 2018, 57, 14134−14138.  doi: 10.1002/anie.201808780

    64. [64]

      Liu, G.; Ciborowski, S. M.; Zhu, Z.; Chen, Y.; Zhang, X.; Bowen, K. H. The metallo-formate anions, M(CO2), M = Ni, Pd, Pt, formed by electron-induced CO2 activation. Phys. Chem. Chem. Phys. 2019, 21, 10955−10960.  doi: 10.1039/C9CP01915D

    65. [65]

      Zhang, X.; Lim, E.; Kim, S. K.; Bowen, K. H. Photoelectron spectroscopic and computational study of (M−CO2) anions, M = Cu, Ag, Au. J. Chem. Phys. 2015, 143, 174305−6.  doi: 10.1063/1.4935061

    66. [66]

      Zhao, Z.; Kong, X.; Yuan, Q.; Xie, H.; Yang, D.; Zhao, J.; Fan, H.; Jiang, L. Coordination-induced CO2 fixation into carbonate by metal oxides. Phys. Chem. Chem. Phys. 2018, 20, 19314−19320.  doi: 10.1039/C8CP02085J

    67. [67]

      Gong, Y.; Zhou, M. F.; Andrews, L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 2009, 109, 6765−6808.  doi: 10.1021/cr900185x

    68. [68]

      Zhou, M. F.; Andrews, L.; Bauschlicher, C. W. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem. Rev. 2001, 101, 1931−1961.  doi: 10.1021/cr990102b

    69. [69]

      Zhang, Q.; Qu, H.; Chen, M.; Zhou, M. Carbon dioxide activation by scandium atoms and scandium monoxide molecules: formation and spectroscopic characterization of ScCO3 and OCScCO3 in solid neon. J. Phys. Chem. A 2016, 120, 425−432.  doi: 10.1021/acs.jpca.5b11809

    70. [70]

      Zhang, Q.; Chen, M.; Zhou, M. Infrared spectra and structures of the neutral and charged CrCO2 and Cr(CO2)2 isomers in solid neon. J. Phys. Chem. A 2014, 118, 6009−6017.  doi: 10.1021/jp505740j

    71. [71]

      Zhuang, J.; Li, Z. H.; Fan, K.; Zhou, M. Matrix isolation spectroscopic and theoretical study of carbon dioxide activation by titanium oxide molecules. J. Phys. Chem. A 2012, 116, 3388−3395.  doi: 10.1021/jp301025n

    72. [72]

      Zhou, M.; Zhou, Z.; Zhuang, J.; Li, Z. H.; Fan, K.; Zhao, Y.; Zheng, X. Carbon dioxide coordination and activation by niobium oxide molecules. J. Phys. Chem. A 2011, 115, 14361−14369.  doi: 10.1021/jp208291g

    73. [73]

      Jiang, L.; Teng, Y. L.; Xu, Q. Infrared spectroscopic and density functional theory study on the reactions of rhodium and cobalt atoms with carbon dioxide in rare-gas matrixes. J. Phys. Chem. A 2007, 111, 7793−7799.  doi: 10.1021/jp0728095

    74. [74]

      Liang, B.; Andrews, L. Reactions of laser-ablated osmium and ruthenium atoms with carbon dioxide: matrix infrared spectra and density functional calculations on OMCO, O2MCO, OMCO (M = Os, Ru), O2Os(CO)2, and OCRu(O2)CO. J. Phys. Chem. A 2002, 106, 4042−4053.  doi: 10.1021/jp0200167

    75. [75]

      Liang, B. Y.; Andrews, L. Reactions of laser-ablated rhenium atoms with carbon dioxide: matrix infrared spectra and density functional calculations on OReCO, O2ReCO, ORe(CO)2, O2Re(CO)2, OReCO, and ORe(CO)2. J. Phys. Chem. A 2002, 106, 595−602.  doi: 10.1021/jp013184s

    76. [76]

      Zhang, L. N.; Wang, X. F.; Chen, M. H.; Qin, Q. Z. Activation of CO2 by Zr atom. Matrix-isolation FTIR spectroscopy and density functional studies. Chem. Phys. 2000, 254, 231−238.  doi: 10.1016/S0301-0104(00)00031-8

    77. [77]

      Wang, X. F.; Chen, M. H.; Zhang, L. N.; Qin, Q. Z. Spectroscopic and theoretical studies on the reactions of laser-ablated tantalum with carbon dioxide. J. Phys. Chem. A 2000, 104, 758−764.  doi: 10.1021/jp9927808

    78. [78]

      Andrews, L.; Zhou, M. F.; Liang, B. Y.; Li, J.; Bursten, B. E. Reactions of laser-ablated U and Th with CO2: neon matrix infrared spectra and density functional calculations of OUCO, OThCO, and other products. J. Am. Chem. Soc. 2000, 122, 11440−11449.  doi: 10.1021/ja0016699

    79. [79]

      Zhou, M. F.; Liang, B. Y.; Andrews, L. Infrared spectra of OMCO (M = Cr−Ni), OMCO (M = Cr−Cu), and MCO2 (M = Co−Cu) in solid argon. J. Phys. Chem. A 1999, 103, 2013−2023.  doi: 10.1021/jp984439d

    80. [80]

      Zhou, M. F.; Andrews, L. Infrared spectra and density functional calculations for OMCO, OM−(η2-CO), OMCO+, and OMOC+ (M = V, Ti) in solid argon. J. Phys. Chem. A 1999, 103, 2066−2075.  doi: 10.1021/jp9844009

    81. [81]

      Souter, P. F.; Andrews, L. A spectroscopic and theoretical study of the reactions of group 6 metal atoms with carbon dioxide. J. Am. Chem. Soc. 1997, 119, 7350−7360.  doi: 10.1021/ja971038n

    82. [82]

      Clemmer, D. E.; Weber, M. E.; Armentrout, P. B. Reactions of Al+(1S) with NO2, N2O, and CO2: thermochemistry of AlO and AlO+. J. Phys. Chem. 1992, 96, 10888−10893.  doi: 10.1021/j100205a052

    83. [83]

      Sievers, M. R.; Armentrout, P. B. Potential energy surface for carbon-dioxide activation by V+: a guided ion beam study. J. Chem. Phys. 1995, 102, 754−762.  doi: 10.1063/1.469188

    84. [84]

      Griffin, J. B.; Armentrout, P. B. Guided ion beam studies of the reactions of Crn+ (n = 1~18) with CO2: chromium cluster oxide bond energies. J. Chem. Phys. 1998, 108, 8075−8083.  doi: 10.1063/1.476246

    85. [85]

      Griffin, J. B.; Armentrout, P. B. Guided ion-beam studies of the reactions of Fen+ (n = 1~18) with CO2: iron cluster oxide bond energies. J. Chem. Phys. 1997, 107, 5345−5355.  doi: 10.1063/1.474244

    86. [86]

      Hintz, P. A.; Ervin, K. M. Chemisorption and oxidation reactions of nickel group cluster anions with N2, O2, CO2, and N2O. J. Chem. Phys. 1995, 103, 7897−7906.  doi: 10.1063/1.470207

    87. [87]

      Rodgers, M. T.; Walker, B.; Armentrout, P. B. Reactions of Cu+ (1S and 3D) with O2, CO, CO2, N2, NO, N2O, and NO2 studied by guided ion beam mass spectrometry. Int. J. Mass Spectrom. 1999, 182/183, 99−120.  doi: 10.1016/S1387-3806(98)14228-8

    88. [88]

      Sievers, M. R.; Armentrout, P. B. Activation of carbon dioxide: gas-phase reactions of Y+, YO+, and YO2+ with CO and CO2. Inorg. Chem. 1999, 38, 397−402.  doi: 10.1021/ic981117f

    89. [89]

      Sievers, M. R.; Armentrout, P. B. Oxidation of CO and reduction of CO2 by gas phase Zr+, ZrO+, and ZrO2+. Int. J. Mass Spectrom. 1999, 185/186/187, 117−129.

    90. [90]

      Sievers, M. R.; Armentrout, P. B. Gas phase activation of carbon dioxide by niobium and niobium monoxide cations. Int. J. Mass Spectrom. 1998, 179/180, 103−115.  doi: 10.1016/S1387-3806(98)14064-2

    91. [91]

      Sievers, M. R.; Armentrout, P. B. Reactions of CO and CO2 with gas-phase Mo+, MoO+, and MoO2+. J. Phys. Chem. A 1998, 102, 10754−10762.  doi: 10.1021/jp983694v

    92. [92]

      Cornehl, H. H.; Wesendrup, R.; Diefenbach, M.; Schwarz, H. A comparative study of oxo-ligand effects in the gas-phase chemistry of atomic lanthanide and actinide cations. Chem. Eur. J. 1997, 3, 1083−1090.  doi: 10.1002/chem.19970030716

    93. [93]

      Armentrout, P. B.; Cox, R. M. Potential energy surface for the reaction Sm+ + CO2 → SmO+ + CO: guided ion beam and theoretical studies. Phys. Chem. Chem. Phys. 2017, 19, 11075−11088.  doi: 10.1039/C7CP00914C

    94. [94]

      Demireva, M.; Armentrout, P. B. Activation of CO2 by gadolinium cation (Gd+): energetics and mechanism from experiment and theory. Top. Catal. 2018, 61, 3−19.  doi: 10.1007/s11244-017-0858-1

    95. [95]

      Lourenço, C.; Michelini, M. C.; Marçalo, J.; Gibson, J. K.; Oliveira, M. C. Gas-phase reaction studies of dipositive hafnium and hafnium oxide ions: generation of the peroxide HfO22+. J. Phys. Chem. A 2012, 116, 12399−12405.  doi: 10.1021/jp3088385

    96. [96]

      Wesendrup, R.; Schwarz, H. Tantalum-mediated coupling of methane and carbon dioxide in the gas phase. Angew. Chem, Int. Ed. 1995, 34, 2033−2035.  doi: 10.1002/anie.199520331

    97. [97]

      Santos, M.; Michelini, M. C.; Lourenço, C.; Marçalo, J.; Gibson, J. K.; Oliveira, M. C. Gas-phase oxidation reactions of Ta2+: synthesis and properties of TaO2+ and TaO22+. J. Phys. Chem. A 2012, 116, 3534−3540.  doi: 10.1021/jp300294c

    98. [98]

      Irikura, K. K.; Beauchamp, J. L. Electronic structure considerations for methane activation by third-row transition-metal ions. J. Phys. Chem. 1991, 95, 8344−8351.  doi: 10.1021/j100174a057

    99. [99]

      Zhang, X. G.; Armentrout, P. B. Activation of O2, CO, and CO2 by Pt+: the thermochemistry of PtO+. J. Phys. Chem. A 2003, 107, 8904−8914.  doi: 10.1021/jp036014j

    100. [100]

      Santos, M.; Marçalo, J.; de Matos, A. P.; Gibson, J. K.; Haire, R. G. Gas-phase oxidation reactions of neptunium and plutonium ions investigated via Fourier transform ion cyclotron resonance mass spectrometry. J. Phys. Chem. A 2002, 106, 7190−7194.  doi: 10.1021/jp025733f

    101. [101]

      Armentrout, P. B.; Beauchamp, J. L. Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O. Chem. Phys. 1980, 50, 27−36.  doi: 10.1016/0301-0104(80)87022-4

    102. [102]

      Canale, V.; Robinson, R.; Zavras, A.; Khairallah, G. N.; d'Alessandro, N.; Yates, B. F.; O'Hair, R. A. J. Two spin-state reactivity in the activation and cleavage of CO2 by [ReO2]. J. Phys. Chem. Lett. 2016, 7, 1934−1938.  doi: 10.1021/acs.jpclett.6b00754

    103. [103]

      Zhang, X. G.; Armentrout, P. B. Activation of O2 and CO2 by PtO+: the thermochemistry of PtO2+. J. Phys. Chem. A 2003, 107, 8915−8922.  doi: 10.1021/jp036015b

    104. [104]

      Hossain, E.; Rothgeb, D. W.; Jarrold, C. C. CO2 reduction by group 6 transition metal suboxide cluster anions. J. Chem. Phys. 2010, 133, 024305−10.  doi: 10.1063/1.3455220

    105. [105]

      Rothgeb, D. W.; Hossain, E.; Mann, J. E.; Jarrold, C. C. Disparate product distributions observed in Mo(3-x)WxOy (x = 0~3; y = 3~9) reactions with D2O and CO2. J. Chem. Phys. 2010, 132, 064302−10.  doi: 10.1063/1.3313927

    106. [106]

      Firouzbakht, M.; Rijs, N. J.; González-Navarrete, P.; Schlangen, M.; Kaupp, M.; Schwarz, H. On the activation of methane and carbon dioxide by [HTaO]+ and [TaOH]+ in the gas phase: a mechanistic study. Chem. Eur. J. 2016, 22, 10581−10589.  doi: 10.1002/chem.201601339

    107. [107]

      Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout, P. B. Thermochemistry and reactivity of cationic scandium and titanium sulfide in the gas phase. J. Phys. Chem. A 2000, 104, 5046−5058.  doi: 10.1021/jp994228o

    108. [108]

      Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout, P. B. Experimental and theoretical studies of vanadium sulfide cation. J. Phys. Chem. A 1998, 102, 10060−10073.  doi: 10.1021/jp982199w

    109. [109]

      Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B. Gas-phase thermochemistry of the early cationic transition-metal sulfides of the second row: YS+, ZrS+, and NbS+. Int. J. Mass Spectrom. 2006, 249−250, 263−278.

    110. [110]

      Miller, G. B. S.; Uggerud, E. C−C bond formation of Mg- and Zn-activated carbon dioxide. Chem. Eur. J. 2018, 24, 4710−4717.  doi: 10.1002/chem.201706069

    111. [111]

      Firouzbakht, M.; Schlangen, M.; Kaupp, M.; Schwarz, H. Mechanistic aspects of CO2 activation mediated by phenyl yttrium cation: a combined experimental/theoretical study. J. Catal. 2016, 343, 68−74.  doi: 10.1016/j.jcat.2015.09.012

    112. [112]

      Zhou, S. D.; Li, J. L.; Firouzbakht, M.; Schlangen, M.; Schwarz, H. Sequential gas-phase activation of carbon dioxide and methane by [Re(CO)2]+: the sequence of events matters! J. Am. Chem. Soc. 2017, 139, 6169−6176.  doi: 10.1021/jacs.7b01255

    113. [113]

      Dau, P. D.; Armentrout, P. B.; Michelini, M. C.; Gibson, J. K. Activation of carbon dioxide by a terminal uranium-nitrogen bond in the gas-phase: a demonstration of the principle of microscopic reversibility. Phys. Chem. Chem. Phys. 2016, 18, 7334−7340.  doi: 10.1039/C6CP00494F

    114. [114]

      Gregoire, G.; Brinkmann, N. R.; van Heijnsbergen, D.; Schaefer, H. F.; Duncan, M. A. Infrared photodissociation spectroscopy of Mg+(CO2)n and Mg+(CO2)nAr clusters. J. Phys. Chem. A 2003, 107, 218−227.  doi: 10.1021/jp026373z

    115. [115]

      Walters, R. S.; Brinkmann, N. R.; Schaefer, H. F.; Duncan, M. A. Infrared photodissociation spectroscopy of mass-selected Al+(CO2)n and Al+(CO2)nAr clusters. J. Phys. Chem. A 2003, 107, 7396−7405.

    116. [116]

      Jaeger, J. B.; Jaeger, T. D.; Brinkmann, N. R.; Schaefer, H. F.; Duncan, M. A. Infrared photodissociation spectroscopy of Si+(CO2)n and Si+(CO2)nAr complexes − evidence for unanticipated intracluster reactions. Can. J. Chem. 2004, 82, 934−946.  doi: 10.1139/v04-044

    117. [117]

      Xing, X. P.; Wang, G. J.; Wang, C. X.; Zhou, M. F. Infrared photodissociation spectroscopy of Ti+(CO2)2Ar and Ti+(CO2)n (n = 3~7) complexes. Chin. J. Chem. Phys. 2013, 26, 687−693.  doi: 10.1063/1674-0068/26/06/687-693

    118. [118]

      Ricks, A. M.; Brathwaite, A. D.; Duncan, M. A. IR spectroscopy of gas phase V(CO2)n+ clusters: solvation-induced electron transfer and activation of CO2. J. Phys. Chem. A 2013, 117, 11490−11498.

    119. [119]

      Walker, N. R.; Walters, R. S.; Duncan, M. A. Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. J. Chem. Phys. 2004, 120, 10037−10045.  doi: 10.1063/1.1730217

    120. [120]

      Gregoire, G.; Duncan, M. A. Infrared spectroscopy to probe structure and growth dynamics in Fe+-(CO2)n clusters. J. Chem. Phys. 2002, 117, 2120−2130.  doi: 10.1063/1.1490600

    121. [121]

      Gregoire, G.; Velasquez, J.; Duncan, M. A. Infrared photodissociation spectroscopy of small Fe+-(CO2)n and Fe+-(CO2)nAr clusters. Chem. Phys. Lett. 2001, 349, 451−457.  doi: 10.1016/S0009-2614(01)01247-7

    122. [122]

      Yang, D.; Su, M. Z.; Zheng, H. J.; Zhao, Z.; Li, G.; Kong, X. T.; Xie, H.; Fan, H. J.; Zhang, W. Q.; Jiang, L. Infrared photodissociation spectroscopic and theoretical study of Co(CO2)n+ clusters. Chin. J. Chem. Phys. 2019, 32, 223−228.  doi: 10.1063/1674-0068/cjcp1902032

    123. [123]

      Iskra, A.; Gentleman, A. S.; Kartouzian, A.; Kent, M. J.; Sharp, A. P.; Mackenzie, S. R. Infrared spectroscopy of gas-phase M+(CO2)n (M = Co, Rh, Ir) ion-molecule complexes. J. Phys. Chem. A 2017, 121, 133−140.  doi: 10.1021/acs.jpca.6b10902

    124. [124]

      Walker, N. R.; Walters, R. S.; Grieves, G. A.; Duncan, M. A. Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. J. Chem. Phys. 2004, 121, 10498−10507.  doi: 10.1063/1.1806821

    125. [125]

      Walker, N. R.; Grieves, G. A.; Walters, R. S.; Duncan, M. A. The metal coordination in Ni+(CO2)n and NiO2+(CO2)m complexes. Chem. Phys. Lett. 2003, 380, 230−236.  doi: 10.1016/j.cplett.2003.08.107

    126. [126]

      Zhao, Z.; Kong, X.; Yang, D.; Yuan, Q.; Xie, H.; Fan, H.; Zhao, J.; Jiang, L. Reactions of copper and silver cations with carbon dioxide: an infrared photodissociation spectroscopic and theoretical study. J. Phys. Chem. A 2017, 121, 3220−3226.  doi: 10.1021/acs.jpca.7b01320

    127. [127]

      Kong, X.; Shi, R.; Wang, C.; Zheng, H.; Wang, T.; Liang, X.; Yang, J.; Jing, Q.; Liu, Y.; Han, H.; Zhao, Z.; Fan, H.; Li, G.; Xie, H. Interaction between CO2 and NbO2+: infrared photodissociation spectroscopic and theoretical study. Chem. Phys. 2020, 534, 110755−7.  doi: 10.1016/j.chemphys.2020.110755

    128. [128]

      Iskra, A.; Gentleman, A. S.; Cunningham, E. M.; Mackenzie, S. R. Carbon dioxide binding to metal oxides: infrared spectroscopy of NbO2+(CO2)n and TaO2+(CO2)n complexes. Int. J. Mass Spectrom. 2019, 435, 93−100.  doi: 10.1016/j.ijms.2018.09.038

    129. [129]

      Thompson, M. C.; Ramsay, J.; Weber, J. M. Interaction of CO2 with atomic manganese in the presence of an excess negative charge probed by infrared spectroscopy of [Mn(CO2)n] clusters. J. Phys. Chem. A 2017, 121, 7534−7542.  doi: 10.1021/acs.jpca.7b06870

    130. [130]

      Thompson, M. C.; Dodson, L. G.; Weber, J. M. Structural motifs of [Fe(CO2)n] clusters (n = 3~7). J. Phys. Chem. A 2017, 121, 4132−4138.  doi: 10.1021/acs.jpca.7b02742

    131. [131]

      Knurr, B. J.; Weber, J. M. Infrared spectra and structures of anionic complexes of cobalt with carbon dioxide ligands. J. Phys. Chem. A 2014, 118, 4056−4062.  doi: 10.1021/jp503194v

    132. [132]

      Knurr, B. J.; Weber, J. M. Interaction of nickel with carbon dioxide in [Ni(CO2)n] clusters studied by infrared spectroscopy. J. Phys. Chem. A 2014, 118, 8753−8757.  doi: 10.1021/jp507149u

    133. [133]

      Knurr, B. J.; Weber, J. M. Structural diversity of copper-CO2 complexes: infrared spectra and structures of [Cu(CO2)n] clusters. J. Phys. Chem. A 2014, 118, 10246−10251.  doi: 10.1021/jp508219y

    134. [134]

      Knurr, B. J.; Weber, J. M. Solvent-mediated reduction of carbon dioxide in anionic complexes with silver atoms. J. Phys. Chem. A 2013, 117, 10764−10771.  doi: 10.1021/jp407646t

    135. [135]

      Knurr, B. J.; Weber, J. M. Solvent-driven reductive activation of carbon dioxide by gold anions. J. Am. Chem. Soc. 2012, 134, 18804−18808.  doi: 10.1021/ja308991a

    136. [136]

      Dodson, L. G.; Thompson, M. C.; Weber, J. M. Interactions of molecular titanium oxides TiOx (x = 1~3) with carbon dioxide in cluster anions. J. Phys. Chem. A 2018, 122, 6909−6917.  doi: 10.1021/acs.jpca.8b06229

    137. [137]

      Miller, G. B. S.; Esser, T. K.; Knorke, H.; Gewinner, S.; Schöllkopf, W.; Heine, N.; Asmis, K. R.; Uggerud, E. Spectroscopic identification of a bidentate binding motif in the anionic magnesium-CO2 complex ([ClMgCO2]). Angew. Chem. Int. Ed. 2014, 53, 14407−14410.  doi: 10.1002/anie.201409444

    138. [138]

      Graham, J. D.; Buytendyk, A. M.; Zhang, X.; Kim, S. K.; Bowen, K. H. Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)] anionic complex. J. Chem. Phys. 2015, 143, 184315−4.  doi: 10.1063/1.4935573

  • 加载中
    1. [1]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    2. [2]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    5. [5]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    6. [6]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    7. [7]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    8. [8]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    9. [9]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    10. [10]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    11. [11]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    14. [14]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    15. [15]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    16. [16]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    17. [17]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    18. [18]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    19. [19]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    20. [20]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

Metrics
  • PDF Downloads(4)
  • Abstract views(350)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return