Citation: Wei-Hong YAN, Xian-Cai ZENG. Two New Copper Complexes by H4AQTC (Anthraquinone-1, 4, 5, 8-tetracarboxylic Acid): Syntheses, Structures and Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 349-356. doi: 10.14102/j.cnki.0254–5861.2011–2923 shu

Two New Copper Complexes by H4AQTC (Anthraquinone-1, 4, 5, 8-tetracarboxylic Acid): Syntheses, Structures and Properties

  • Corresponding author: Wei-Hong YAN, yyu_yu@163.com
  • Received Date: 28 June 2020
    Accepted Date: 24 July 2020

Figures(7)

  • Two new complexes [Cu(AQTC)0.5(H2O)3]·3H2O}n (1, H4AQTC = anthraquinone-1, 4, 5, 8-tetracarboxylic acid) and Cu[(Py)2C(OH)2]2(H2AQTC)·2H2O (2, (Py)2CO = di-2-pyridyl ketone) have been prepared and characterized by elemental analyses and IR spectroscopy. X-ray crystallographic studies show that complex 1 crystallizes in monoclinic space group C2/m and complex 2 in monoclinic space group P21/c. Complex 1 features a 1D chain structure by carboxyl oxygen atoms. Complex 2 displays a mononuclear structure and anions and cations are separated. What's interesting is that the ligand of H4AQTC with eight carboxyl oxygen atoms and two quinone oxygen atoms does not directly coordinate with metals, and only exist as a counter-anion in complex 2. Three-dimensional structures of two complexes are formed by intermolecular interactions. The thermogravimetric analyses of two complexes are investigated. The luminescent properties of complex 1 are investigated as well.
  • 加载中
    1. [1]

      Manriquez, J. M.; Yee, G. T.; McLean, R. S.; Epstein, A. J.; Miller, J. S. A room temperature molecular/organic based magnet. Science 1991, 252, 1415–1417.  doi: 10.1126/science.252.5011.1415

    2. [2]

      Huang, Y. Q.; Yuan, D. Q.; Pan, L.; Jiang, F. L.; Wu, M. Y.; Zhang, X. D.; Wei, W.; Gao, Q.; Lee, J. Y.; Li, J.; Hong, M. C. A 3D porous cobalt-organic framework exhibiting spin-canted antiferromagnetism and field-induced spin-flop transition. Inorg. Chem. 2007, 46, 9609−9615.  doi: 10.1021/ic700559z

    3. [3]

      Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379.  doi: 10.1039/b804757j

    4. [4]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.  doi: 10.1039/b802352m

    5. [5]

      Liu, Y.; Xuan, W.; Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 2010, 22, 4112–4135.  doi: 10.1002/adma.201000197

    6. [6]

      Demessence, A.; Long, J. R. Selective gas adsorption in the flexible metal-organic frameworks Cu(BDTri)L (L = DMF, DEF). Chem. Eur. J. 2010, 16, 5902–5908.  doi: 10.1002/chem.201000053

    7. [7]

      Herm, Z. R.; Swisher, J. A.; Smit, B.; Krishna, R.; Long, J. R. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 2011, 133, 5664–5667.  doi: 10.1021/ja111411q

    8. [8]

      Ding, Q. Q.; Xu, X. W.; Yue, Y. Y.; Mei, C. T.; Huang, C. B.; Jiang, S. H.; Wu, Q. L.; Han, J. Q. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 2018, 10, 27987–28002.  doi: 10.1021/acsami.8b09656

    9. [9]

      Yang, H. Q.; Liu, S. W.; Cao, L. H.; Jiang, S. H.; Hou, H. Q. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 21216–21224.  doi: 10.1039/C8TA05109G

    10. [10]

      Jiang, S. H.; Han, D. H.; Huang, C. B.; Duan, G. G.; Hou, H. Q. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater. Lett. 2018, 216, 81–83.  doi: 10.1016/j.matlet.2017.12.146

    11. [11]

      Lv, D.; Wang, R. X.; Tang, G. H.; Mou, Z. P.; Lei, J. D.; Han, J. Q.; De Smedt, S.; Xiong, R. H.; Huang, C. B. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Interfaces 2019, 11, 12880–12889.  doi: 10.1021/acsami.9b01508

    12. [12]

      Huang, B.; Wang, X. Y.; Fang H.; Jiang, S. H.; Hou, H. Q. Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Mater. Lett. 2019, 234, 354–356.  doi: 10.1016/j.matlet.2018.09.131

    13. [13]

      Zang, S. Q.; Fan, Y. J.; Li, J. B.; Hou, H. W.; Mak, T. C. W. Halogen bonding in the assembly of coordination polymers based on 5-iodo-isophthalic acid. Cryst. Growth Des. 2011, 11, 3395–3405.  doi: 10.1021/cg200022j

    14. [14]

      Wei, Y. L.; Li, X. Y.; Kang, T. T.; Wang, S. N.; Zang, S. Q. A series of Ag(I)-Cd(II) hetero- and Ag(I) homo-nuclear coordination polymers based on 5-iodo-isophthalic acid and N-donor ancillary ligands. CrystEngComm. 2014, 16, 223–230.  doi: 10.1039/C3CE41714J

    15. [15]

      Li, B.; Fan, H. T. Syntheses, structure and thermal analysis of a cobalt coordinationpolymer with multiform helical features based on flexible iododicarboxylate ligand and n-donor ancillary ligand. Chin. J. Struct. Chem. 2015, 34, 735–740.

    16. [16]

      Yan, W. H.; Bao, S. S.; Ding, L. L.; Lu, C. S.; Meng, Q. J.; Zheng, L. M. Syntheses and characterizations of two-dimensional lanthanide coordination polymers based on anthraquinone-1, 4, 5, 8-tetracarboxylic acid. Inorg. Chem. Commun. 2013, 28, 20–24.  doi: 10.1016/j.inoche.2012.11.012

    17. [17]

      Yan, W. H.; Bao, S. S.; Huang, J.; Ren, M.; Sheng, X. L.; Cai, Z. S.; Lu, C. S.; Meng, Q. J.; Zheng, L. M. Co(II) and Ni(II) complexes based on anthraquinone-1, 4, 5, 8-tetracarboxylic acid (H4AQTC): canted antiferromagnetism and slow magnetization relaxation in {[Co2(AQTC)(H2O)6]·6H2O}. Dalton Trans. 2013, 42, 8241–8248.  doi: 10.1039/c3dt50381j

    18. [18]

      Yan, W. H.; Yang, L. B.; Shen, M. L.; Ji, E. Y. A Three-dimensional Ba(II) coordination polymer based on H4AQTC (anthraquinone-1, 4, 5, 8-tetracarboxylic acid): quinone oxygen atoms participate in coordination. Chin. J. Struct. Chem. 2015, 34, 133–139.

    19. [19]

      Llano-Tomé, F.; Bazán, B.; Urtiaga, M. K.; Barandika, G.; Fidalgo-Marijuan, A.; Fernández de Luisab, R.; Arriortua, M. I. Water-induced phase transformation of a CuII coordination framework with pyridine-2, 5-dicarboxylate and di-2-pyridyl ketone: synchrotron radiation analysis. CrystEngComm. 2015, 17, 6346–6354.  doi: 10.1039/C5CE01033K

    20. [20]

      Deveson, A. C.; Heath, S. L.; Harding, C. J.; Powell, A. K. Synthesis and structures of copper(II) anion-bridged aggregates and chains: control over molecular shape. J. Chem. Soc., Dalton Trans. 1996, 15, 3173–3178.

    21. [21]

      Hemmert, C.; Renz, M.; Gornitzka, H.; Soulet, S.; Meunier, B. Preparation and crystal structures of manganese, iron, and cobalt complexes of the bis[di(2-pyridyl)methyl]amine (bdpma) ligand and its oxidative degradation product 1, 3, 3-tris(2-pyridyl)-3H-imidazo[1, 5-a]-pyridin-4-ium(tpip).; origin of the bdpma fragility. Chem. Eur. J. 1999, 5, 1766–1774.  doi: 10.1002/(SICI)1521-3765(19990604)5:6<1766::AID-CHEM1766>3.0.CO;2-Z

    22. [22]

      Song, F. Y.; More, R.; Schilling, M.; Smolentsev, G.; Azzaroli, N.; Fox, T.; Luber, S.; Patzke, G. R. {Co4O4} and {CoxNi4-xO4} cubane water oxidation catalysts assurface cut-outs of cobalt oxides. J. Am. Chem. Soc. 2017, 139, 14198−14208.  doi: 10.1021/jacs.7b07361

    23. [23]

      Fidelli, A. M.; Armakola, E.; Demadis, K. D.; Kessler, V. G.; Escuer, A.; Papaefstathiou, G. S. CuII frameworks from di-2-pyridyl ketone and benzene-1, 3, 5-triphosphonic acid. Eur. J. Inorg. Chem. 2018, 91–98.

    24. [24]

      Song, F. Y.; Al-Ameed, K.; Schilling, M.; Fox, T.; Lube, S.; Patzke, G. R. Mechanistically driven control over cubane oxo cluster catalysts. J. Am. Chem. Soc. 2019, 141, 8846−8857.  doi: 10.1021/jacs.9b01356

    25. [25]

      Huang, N. Z.; Jia, J. H.; Wang, L. L.; Chan, T. L.; Mak, T. C. W. 1, 4, 7, 10-Tetramethyl-5, 6-didehydrodibenzo[a, e]cyclooctene. A presumably planar fully conjugated eight-membered ring compound. Tetrahedron Lett. 1982, 23, 4797–4800.  doi: 10.1016/S0040-4039(00)85716-0

    26. [26]

      Chan, T. L.; Mak, T. C. W.; Poon, C. D.; Wong, H. N. C.; Jia, J. H.; Wang, L. L. A stable derivative of cyclooctatrienyne: synthesis and crystal structures of 1, 4, 7, 10-tetramethyl-5, 6-didehydrodibenzo[a, e]cyclooctene and 1, 4, 7, 10-tetramethyldibenzo[a, e]cyclooctene. Tetrahedron 1986, 42, 655–661.  doi: 10.1016/S0040-4020(01)87466-4

    27. [27]

      SAINT-Plus, version 6.02.; Bruker analytical X-ray system: Madison, WI 1999.

    28. [28]

      Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.

    29. [29]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

    30. [30]

      Zhao, M. G.; Liu, C. Q. Synthesis, crystal structure and magnetic behavior of a two-dimensional copper(II) complex with mellitic anion as bridging ligand. Transition Met. Chem. 2003, 28, 525–528.  doi: 10.1023/A:1025020704082

    31. [31]

      Kavounis, C. A.; Tsiamis, C.; Cardin, C. J.; Zubavichus, Y. Structure and spectra of dichloro(hydroxy-methoxy-di(2-pyridyl)methane) copper(II). Polyhedron 1996, 385–390.

    32. [32]

      Jeffrey, G. A. Hydrogen-bonding: an update. Crystallography Reviews 2003, 9, 135–176.  doi: 10.1080/08893110310001621754

    33. [33]

      Malone, J. F.; Murray, C. M.; Charlton, M. H.; Docherty, R.; Lavery, A. J. X–H ···π(phenyl) interactions theoretical and crystallographic observations. J. Chem. Soc., Faraday Trans. 1997, 93, 3429–3436.  doi: 10.1039/a700669a

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(1)
  • Abstract views(292)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return