Citation: Yu-Hua GUO, You-Zhu YU, Yong-Sheng NIU, Zhen WANG, Wei-Yun SHI, Xian-Li WU. Solvothermal Synthesis, Crystal Structure and Photocurrent Property of a Ti6-Core-based Titanium Oxo Cluster[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 357-362. doi: 10.14102/j.cnki.0254–5861.2011–2921 shu

Solvothermal Synthesis, Crystal Structure and Photocurrent Property of a Ti6-Core-based Titanium Oxo Cluster

  • Corresponding author: You-Zhu YU, 119yyz@163.com
  • Received Date: 28 June 2020
    Accepted Date: 11 August 2020

    Fund Project: the National Natural Science Foundation of China 21702005the Foundation of the Henan Joint International Research Laboratory of Nanocomposite Sensing Materials and the Foundation of Anyang Institute of Technology YPY2019003

Figures(7)

  • A Ti6-core-based titanium oxo cluster (TOC) [Ti6(μ2-O)2(μ3-O)2(Bpo)2(PhCOO)8(OiPr)4] assembled by 2, 2΄-biphenol (H2Bpo) and benzoic acid has been synthesized and characterized by IR, elemental analyses, thermogravimetric analysis and X-ray diffraction technique. Single-crystal X-ray diffraction analysis revealed that the complex crystallizes in monoclinic system, space group P21/n. The structure contains two Ti3(μ3-O) units featuring a flat mode as building blocks. Solid-state UV/Vis absorption spectrum reveals that complex 1 shows a wide range from 240 to 650 nm. Moreover, the optical band gap of 1 is estimated to be 2.35 eV. Additionally, the Ti6-TOC exhibits good photocurrent response.
  • 加载中
    1. [1]

      Wadia, C.; Alivisatos, A. P.; Kammen, D. M. Materials availability expands the opportunity for large-scale photovoltaics deployment. Energy Environ. Sci. 2009, 43, 2072–2077.

    2. [2]

      Liu, S.; Tang, Z. R.; Sun, Y.; Colmenares, J. C.; Xu, Y. J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053–5075.  doi: 10.1039/C4CS00408F

    3. [3]

      Singh, A. K.; Montoya, J. H.; Gregoire, J. M.; Persson, K. A. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat. Commun. 2019, 10, 1–9.  doi: 10.1038/s41467-018-07882-8

    4. [4]

      Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.  doi: 10.1021/jacs.7b00369

    5. [5]

      Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015.  doi: 10.1021/ja0782706

    6. [6]

      Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.  doi: 10.1021/ja5044787

    7. [7]

      Guan, G. Q.; Zou, M. Z.; Lin, J. P.; Yan, G. Y. Annealing temperature effects of TiO2 nanofiber anodes for the rechargeable lithium ion batteries. Chin. J. Struct. Chem. 2017, 36, 729–737.

    8. [8]

      Shen, S. F.; Qian, K. T.; Chen, J. P.; Wen, M. Y. One-step growth of hierarchical nanotreelike TiO2 on ITO without template and its application in gas sensor. Chin. J. Struct. Chem. 2019, 38, 1743–1751.

    9. [9]

      Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595.  doi: 10.1038/nmat3312

    10. [10]

      Wang, C.; Liu, C.; Tian, H. R.; Li, L. J.; Sun, Z. M. Designed cluster assembly of multidimensional titanium coordination polymers: syntheses, crystal structure and properties. Chem. -Eur. J. 2018, 24, 2952–2961.  doi: 10.1002/chem.201705013

    11. [11]

      Yu, Y. Z.; Guo, Y.; Zhang, Y. R.; Liu, M. M.; Feng, Y. R.; Geng, C. H.; Zhang, X. M. A series of silver doped butterfly-like Ti8Ag2 clusters with two Ag ions panelled on a Ti8 surface. Dalton Trans. 2019, 48, 13423–13429.  doi: 10.1039/C9DT02508A

    12. [12]

      Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.; Hamilton, J. W.; Byrne, J. A.; O'shea, K. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal., B 2012, 125, 331–349.  doi: 10.1016/j.apcatb.2012.05.036

    13. [13]

      Benkstein, K. D.; Kopidakis, N.; Van de Lagemaat, J.; Frank, A. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B 2003, 107, 7759–7767.  doi: 10.1021/jp022681l

    14. [14]

      Labat, F.; Le Bahers, T.; Ciofini, I.; Adamo, C. First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Acc. Chem. Res. 2012, 45, 1268–1277.  doi: 10.1021/ar200327w

    15. [15]

      Duncan, W. R.; Prezhdo, O. V. Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory. J. Am. Chem. Soc. 2008, 130, 9756–9762.  doi: 10.1021/ja800268x

    16. [16]

      Yu, Y. Z.; Zhang, Y. R.; Geng, C. H.; Sun, L.; Guo, Y.; Feng, Y. R.; Wang, Y. X.; Zhang, X. M. Precise and wide-ranged band-gap tuning of Ti6-core-based titanium oxo clusters by the type and number of chromophore ligands. Inorg. Chem. 2019, 58, 16785–16791.  doi: 10.1021/acs.inorgchem.9b02951

    17. [17]

      Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.  doi: 10.1039/C7CS00511C

    18. [18]

      Fang, W. H.; Zhang, L.; Zhang, J. A 3.6 nm Ti52-oxo nanocluster with precise atomic structure. J. Am. Chem. Soc. 2016, 138, 7480–7483.  doi: 10.1021/jacs.6b03489

    19. [19]

      Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Bandgap engineering of titanium-oxo clusters: labile surface sites used for ligand substitution and metal incorporation. Angew. Chem., Int. Ed. 2016, 55, 5160–5165.  doi: 10.1002/anie.201510455

    20. [20]

      Benedict, J. B.; Coppens, P. The crystalline nanocluster phase as a medium for structural and spectroscopic studies of light absorption of photosensitizer dyes on semiconductor surfaces. J. Am. Chem. Soc. 2010, 132, 2938–2944.  doi: 10.1021/ja909600w

    21. [21]

      Narayanam, N.; Fang, W. H.; Chintakrinda, K.; Zhang, L.; Zhang, J. Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by pi-conjugated chromophores. Chem. Commun. 2017, 53, 8078–8080.  doi: 10.1039/C7CC04388K

    22. [22]

      Lv, H. T.; Li, H. M.; Zou, G. D.; Cui, Y.; Huang, Y.; Fan, Y. Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions. Dalton Trans. 2018, 47, 8158–8163.  doi: 10.1039/C8DT01844H

    23. [23]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    24. [24]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.  doi: 10.1107/S2053229614024218

    25. [25]

      Soler-Illia, G. J. D. A.; Rozes, L.; Boggiano, M. K.; Sanchez, C.; Majoral, J. I. New mesotextured hybrid materials made from assemblies of dendrimers and titanium(IV)-oxo-organo clusters. Angew. Chem., Int. Ed. 2000, 39, 4419–4424.

    26. [26]

      Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience, New York 1966.

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(2)
  • Abstract views(336)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return