Citation: Dong-Er GAN, Zhang ZHANG, Qiao-Hong LI, Wen-Mu LI. Oligo(aromatic ether sulfone)-F as a Nonlinear Polarized Polymeric Material: an Experiment and DFT Study[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 383-393. doi: 10.14102/j.cnki.0254–5861.2011–2878 shu

Oligo(aromatic ether sulfone)-F as a Nonlinear Polarized Polymeric Material: an Experiment and DFT Study

  • Corresponding author: Wen-Mu LI, liwm@fjirsm.ac.cn
  • Received Date: 15 May 2020
    Accepted Date: 23 December 2020

Figures(9)

  • Polymeric membranes with diverse structures have attracted much attention as new materials for nonlinear optical devices. In this report, a novel oligomer of poly (aromatic ether sulfone) (OAES) has been synthesized and characterized. The electronic structure as well as linear and nonlinear optical properties has been studied by density function theory. The effect for general nonlinear optical polarizability of various condition has been further researched such as absence of side chains and introduction of phenyl substituent on side chains. The static and frequency-dependent hyperpolarizabilities of OAES and its derivatives have been calculated. This work interprets an efficient adjustment for the frequency response and the intensity of nonlinear optical polarizability can be achieved by regulating the structure of system, which provides a new potential for the application of oligomeric materials on nonlinear optical field.
  • 加载中
    1. [1]

      Moliton, A.; Hiorns, R. C. Review of electronic and optical properties of semiconducting π‐conjugated polymers: applications in optoelectronics. Polym. Int. 2004, 53, 1397–1412.  doi: 10.1002/pi.1587

    2. [2]

      Burland, D. M.; Miller, R. D.; Walsh, C. A. Second-order nonlinearity in poled-polymer systems. Chem. Rev. 1994, 94, 31–75.  doi: 10.1021/cr00025a002

    3. [3]

      Champagne, B.; Kirtman, B. Theoretical approach to the design of organic molecular and polymeric nonlinear optical materials. Handbook of Advanced Electronic and Photonic Materials and Devices. Academic Press 2001, 63–126.

    4. [4]

      Cho, M. J.; Choi, D. H.; Sullivan, P. A.; Akelaitis, A. J. P.; Dalton, L. R. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci. 2008, 33, 1013–1058.  doi: 10.1016/j.progpolymsci.2008.07.007

    5. [5]

      Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611.  doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0

    6. [6]

      Liyanage, P. S.; de Silva, R. M.; de Silva, K. M. N. Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations. J. Mol. Struc-Theochem. 2003, 639, 195–201.  doi: 10.1016/j.theochem.2003.08.009

    7. [7]

      Maury, O.; Le Bozec, H. Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes. Accounts Chem. Res. 2005, 38, 691–704.  doi: 10.1021/ar020264l

    8. [8]

      Mehmood, U.; Al-Ahmed, A.; Hussein, I. A. Review on recent advances in polythiophene based photovoltaic devices. Renew. Sust. Energ. Rev. 2016, 57, 550–561.  doi: 10.1016/j.rser.2015.12.177

    9. [9]

      Sun, H. T.; Jochen, A. Electronic energy gaps for π-conjugated oligomers and polymers calculated with density functional theory. J. Chem. Theory Comput. 2014, 10, 1035–1047.  doi: 10.1021/ct4009975

    10. [10]

      Oviedo, M. B.; Ilawe, N. V.; Wong, B. M. Polarizabilities of π-conjugated chains revisited: improved results from broken-symmetry range-separated DFT and new CCSD (T) benchmarks. J. Chem. Theory Comput. 2016, 12, 3593–3602.  doi: 10.1021/acs.jctc.6b00360

    11. [11]

      Zajac, M.; Hrobarik, P.; Magdolen, P.; Foltinova, P.; Zahradnik, P. Donor-π-acceptor benzothiazole-derived dyes with an extended heteroaryl-containing conjugated system: synthesis, DFT study and antimicrobial activity. Tetrahedron 2008, 64, 10605–10618.  doi: 10.1016/j.tet.2008.08.064

    12. [12]

      Janjua, M. R. S. A.; Khan, M. U.; Bashir, B.; Iqbal, M. A.; Song, Y. Z.; Naqvi, S. A. R.; Khan, Z. A. Effect of π-conjugation spacer (CC) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: a DFT study. Comput. Theor. Chem. 2012, 994, 34–40.  doi: 10.1016/j.comptc.2012.06.011

    13. [13]

      Medved, M.; Budzak, S.; Pluta, T. Static NLO responses of fluorinated polyacetylene chains evaluated with long-range corrected density functionals. Chem. Phys. Lett. 2011, 515, 78–84.  doi: 10.1016/j.cplett.2011.08.083

    14. [14]

      Ogawa, K.; Zhang, T. Q.; Yoshihara, K.; Kobuke, Y. Large third-order optical nonlinearity of self-assembled porphyrin oligomers. J. Am. Chem. Soc. 2002, 124, 22–23.  doi: 10.1021/ja0169015

    15. [15]

      Papadopoulos, M. G.; Sadlej, A. J.; Leszczynski, J. Non-linear Optical Properties of Matter. Dordrecht: Springer 2006.

    16. [16]

      Zhu, X.; Zheng, W. R.; Tang, X. F.; Zhang, W. B. Experimental and theoretical investigations of thermal degradation behaviors of poly(aryl ether sulfone)s. J. Sulfur Chem. 2018, 39, 64–75.  doi: 10.1080/17415993.2017.1391810

    17. [17]

      Zuo, P. Y.; Tcharkhtchi, A.; Shirinbayan, M.; Fitoussi, J.; Bakir, F. Overall investigation of poly(phenylene sulfide) from synthesis and process to applications—a review. Macromol. Mater. Eng. 2019, 304, 1800686.  doi: 10.1002/mame.201800686

    18. [18]

      Lade, H.; Kumar, V.; Arthanareeswaran, G.; Ismail, A. F. Sulfonated poly(arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: a review. Int. J. Hydrogen Energ. 2017, 42, 1063–1074.  doi: 10.1016/j.ijhydene.2016.10.038

    19. [19]

      Van der Bruggen, B. Chemical modification of polyethersulfone nanofiltration membranes: a review. J. Appl. Polym. Sci. 2009, 114, 630–642.  doi: 10.1002/app.30578

    20. [20]

      Li, Z.; Ding, J. F.; Robertson, G. P.; Guiver, M. D. A novel bisphenol monomer with grafting capability and the resulting poly(arylene ether sulfone)s. Macromolecules 2006, 39, 6990–6996.  doi: 10.1021/ma061054h

    21. [21]

      Parr, R. G. Density functional theory of atoms and molecules. Horizons of Quantum Chemistry. Springer, Dordrecht 1980, 5–15.

    22. [22]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.  doi: 10.1021/j100096a001

    23. [23]

      Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.  doi: 10.1039/b508541a

    24. [24]

      Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999, 6158–6170.

    25. [25]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.  doi: 10.1063/1.3382344

    26. [26]

      Neese, F. The ORCA program system. WIRES Comput. Mol. Sci. 2012, 2, 73–78.  doi: 10.1002/wcms.81

    27. [27]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.  doi: 10.1002/jcc.22885

    28. [28]

      Meyers, F.; Marder, S. R.; Pierce, B. M.; Bredas, J. L. Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha, beta, and gamma) and bond length alternation. J. Am. Chem. Soc. 1994, 116, 10703–10714.  doi: 10.1021/ja00102a040

    29. [29]

      Tuer, A.; Krouglov, S.; Cisek, R.; Tokarz, D.; Barzda, V. Three-dimensional visualization of the first hyperpolarizability tensor. J. Comput. Chem. 2011, 32, 1128–1134.  doi: 10.1002/jcc.21694

    30. [30]

      Nakano, M.; Fukui, H.; Minami, T.; Yoneda, K.; Shigeta, Y.; Kishi, R.; Champagne, B.; Botek, E.; Kubo, T.; Ohta, K.; Kamada, K. (Hyper) polarizability density analysis for open-shell molecular systems based on natural orbitals and occupation numbers. Theor. Chem. Acc. 2011, 130, 711–724.  doi: 10.1007/s00214-010-0871-y

    31. [31]

      Li, H. P.; Bi, Z. T.; Xu, R. F.; Han, K.; Li, M. X.; Shen, X. P.; Wu, Y. X. Theoretical study on electronic polarizability and second hyperpolarizability of hexagonal graphene quantum dots: effects of size, substituent, and frequency. Carbon 2017, 122, 756–760.  doi: 10.1016/j.carbon.2017.07.033

    32. [32]

      Millefiori, S.; Alparone, A. Ab initio study of the molecular structure, polarizability and first hyperpolarizability of 6-hydroxy-1-formylfulvene. J. Chem. Soc. Faraday T. 1994, 90, 2873–2879.  doi: 10.1039/ft9949002873

  • 加载中
    1. [1]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    2. [2]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    3. [3]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    4. [4]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    5. [5]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    6. [6]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    7. [7]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    8. [8]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    9. [9]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    10. [10]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    11. [11]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    12. [12]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    13. [13]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    14. [14]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    15. [15]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    16. [16]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    17. [17]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    20. [20]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

Metrics
  • PDF Downloads(1)
  • Abstract views(327)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return