Citation: Tian-Pu SHENG, Feng-Rong DAI, Guo-Zong ZHENG, Zhong-Ning CHEN. Synthesis, Crystal Structure and Gas Adsorption Properties of Metal-organic Supercontainer Based 2, 6-Naphthalenedicarboxylate Linker[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 311-316. doi: 10.14102/j.cnki.0254–5861.2011–2855 shu

Synthesis, Crystal Structure and Gas Adsorption Properties of Metal-organic Supercontainer Based 2, 6-Naphthalenedicarboxylate Linker

  • Corresponding author: Guo-Zong ZHENG, Zhengguozong@fjirsm.ac.cn
  • Received Date: 17 April 2020
    Accepted Date: 2 June 2020

    Fund Project: the National Natural Science Foundation of China 21673239the National Natural Science Foundation of China 21501179

Figures(6)

  • A new sulfonylcalixarene-based coordination container 1 was designed and synthesized from the self-assembly reaction of p-tert-butylsulfonylcalix[4]arene (TBSC), Co(II) ion, and 2, 6-naphthalenedicarboxylic acid (NDC). It crystallizes in tetragonal system, space group I4/m with a = b = 30.9119(19) Å, c = 43.565(3) Å, V = 41628(6) Å3, Dc = 0.731 g/cm3, Mr = 9162.36, C384H348Co24O126S24, Z = 2, F(000) = 9384, μ = 0.566 mm–1, the final GOOF = 1.027, R = 0.0987 and wR = 0.2474 for 7240 observed reflections with I > 2σ(I). Structural analyses indicate that 1 adopts an edge-directed octahedral geometry and consists of six TBSC-supported Co4 tetranuclear units locating on the vertices and twelve NDC bridging ligands occupying the edges. The new compound exhibits outstanding performance for the C2 hydrocarbons separation over CH4.
  • 加载中
    1. [1]

      Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001–7045.  doi: 10.1021/cr5005666

    2. [2]

      Duriska, M. B.; Neville, S. M.; Lu, J. Z.; Iremonger, S. S.; Boas, J. F.; Kepert, C. J.; Batten, S. R. Systematic metal variation and solvent and hydrogen-gas storage in supramolecular nanoballs. Angew. Chem. Int. Ed. 2009, 48, 8919–8922.  doi: 10.1002/anie.200903863

    3. [3]

      Liu, T. F.; Liu, Y.; Xuan, W. M.; Cui, Y. Chiral nanoscale metal-organic tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 2010, 49, 4121–4124.  doi: 10.1002/anie.201000416

    4. [4]

      Jiao, J.; Tan, C.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 2018, 140, 2251–2259.  doi: 10.1021/jacs.7b11679

    5. [5]

      Takezawa, H.; Kanda, T.; Nanjo, H.; Fujita, M. Site-selective functionalization of linear diterpenoids through u-shaped folding in a confined artificial cavity. J. Am. Chem. Soc. 2019, 141, 5112–5115.  doi: 10.1021/jacs.9b00131

    6. [6]

      Zhao, D.; Yuan, D. Q.; Krishna, R.; van Baten, J. M.; Zhou, H. C. Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage. Chem. Commun. 2010, 46, 7352–7354.  doi: 10.1039/c0cc02771e

    7. [7]

      Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Côte, A. P.; Kim, J.; Yaghi, O. M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110–7118.  doi: 10.1021/ja042802q

    8. [8]

      Jing, X.; He, C.; Yang, Y.; Duan, C. A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction. J. Am. Chem. Soc. 2015, 137, 3967–3974.  doi: 10.1021/jacs.5b00832

    9. [9]

      Yang, L.; Jing, X.; He, C.; Chang, Z.; Duan, C. Redox-active M8L6 cubic hosts with tetraphenylethylene faces encapsulate organic dyes for light-driven H2 production. Chem. Eur. J. 2016, 22, 18107–18114.  doi: 10.1002/chem.201601447

    10. [10]

      Dai, F. R.; Sambasivam, U.; Hammerstrom, A. J.; Wang, Z. Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior J. Am. Chem. Soc. 2014, 136, 7480–7491.  doi: 10.1021/ja502839b

    11. [11]

      Dai, F. R.; Wang, Z. Modular assembly of metal-organic supercontainers incorporating sulfonylcalixarenes. J. Am. Chem. Soc. 2012, 134, 8002–8005.  doi: 10.1021/ja300095j

    12. [12]

      Dai, F. R.; Becht, D. C.; Wang, Z. Modulating guest binding in sulfonylcalixarene-based metal-organic supercontainers. Chem. Commun. 2014, 50, 5385–5387.  doi: 10.1039/C3CC47420H

    13. [13]

      Dai, F. R.; Qiao, Y.; Wang, Z. Designing structurally tunable and functionally versatile synthetic supercontainers. Inorg. Chem. Front. 2016, 3, 243–249.

    14. [14]

      Bhuvaneswari, N.; Annamalai, K. P.; Dai, F. R.; Chen, Z. N. Pyridinium functionalized coordination containers as highly efficient electrocatalysts for sustainable oxygen evolution. J. Mater. Chem. A 2017, 5, 23559–23565.  doi: 10.1039/C7TA05797K

    15. [15]

      Bhuvaneswari, N.; Dai, F. R.; Chen, Z. N. Sensitive and specific guest recognition through pyridinium-modification in spindle-like coordination containers. Chem. Eur. J. 2018, 24, 6580–6585.  doi: 10.1002/chem.201705210

    16. [16]

      Sun, C. Z.; Sheng, T. P.; Dai, F. R.; Chen, Z. N. Sulfonylcalixaren-based ortho-dicarboxylate-bridged coordination containers for guest encapsulation and separation. Cryst. Growth Des. 2019, 19, 1144–1148.  doi: 10.1021/acs.cgd.8b01633

    17. [17]

      Liu, M.; Liao, W. P.; Hu, C. H.; Du, S. C.; Zhang, H. J. Calixarene-based nanoscale coordination cages. Angew. Chem. Int. Ed. 2012, 51, 1585–1588.  doi: 10.1002/anie.201106732

    18. [18]

      Xiong, K.; Jiang, F.; Gai, Y.; Yuan, D.; Chen, L.; Wu, M.; Su, K.; Hong, M. Truncated octahedral coordination cage incorporating six tetranuclear-metal building blocks and twelve linear edges. Chem. Sci. 2012, 3, 2321–2325.  doi: 10.1039/c2sc20264f

    19. [19]

      Cheng, L. J.; Fan, X. X.; Li, Y. P.; Wei, Q. H.; Dai, F. R.; Chen, Z. N.; Wang, Z. Engineering solid-state porosity of synthetic supercontainers via modification of exo-cavities. Inorg. Chem. Commun. 2017, 78, 61–64.  doi: 10.1016/j.inoche.2017.03.005

    20. [20]

      Du, S.; Hu, C.; Xiao, J. C.; Tan, H.; Liao, W. A giant coordination cage based on sulfonylcalix[4]arenes. Chem Commun. 2012, 48, 9177–9179.  doi: 10.1039/c2cc34265k

    21. [21]

      Du, S.; Yu, T. Q.; Liao, W.; Hu, C. Structure modeling, synthesis and X-ray diffraction determination of an extra-large calixarene-based coordination cage and its application in drug delivery. Dalton Trans. 2015, 44, 14394–14402.  doi: 10.1039/C5DT01526J

    22. [22]

      Fang, Y.; Lian, X.; Huang, Y.; Fu, G.; Xiao, Z.; Wang, Q.; Nan, B.; Pellois, J. P.; Zhou, H. C. Investigating subcellular compartment targeting effect of porous coordination cages for enhancing cancer nanotherapy. Small 2018, 14, e1802709.  doi: 10.1002/smll.201802709

    23. [23]

      Tan, C.; Jiao, J.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Design and sssembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew. Chem. Int. Ed. 2018, 57, 2085–2090.  doi: 10.1002/anie.201711310

    24. [24]

      Iki, N.; Kumagai, H.; Morohashi, N.; Ejima, K.; Hasegawa, M.; Miyanari, S.; Miyano, S. Selective oxidation of thiacalix[4]arenes to the sulfinyl- and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Lett. 1998, 39, 7559–7562.  doi: 10.1016/S0040-4039(98)01645-1

    25. [25]

      Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10.  doi: 10.1107/S1600576714022985

    26. [26]

      Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284.  doi: 10.1107/S0021889811043202

    27. [27]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    28. [28]

      Spek, A. L. Acta Cryst. 2009, D65, 148–155.

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    6. [6]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    11. [11]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    12. [12]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    13. [13]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    14. [14]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    15. [15]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    16. [16]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(2)
  • Abstract views(298)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return