Citation: Jiao-Xue YANG, Guo-Chun LV, Yan WANG, Ze-Hua WANG, Xiao-Min SUN, Zhi-Qiang LI. Mechanism Studies on the Degradation of Hexachlorocyclopentadiene in the Atmosphere[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1925-1932. doi: 10.14102/j.cnki.0254–5861.2011–2833 shu

Mechanism Studies on the Degradation of Hexachlorocyclopentadiene in the Atmosphere

  • Corresponding author: Xiao-Min SUN,  Zhi-Qiang LI, 
  • Received Date: 2 April 2020
    Accepted Date: 27 May 2020

    Fund Project: the National Natural Science Foundation of China 21976109Natural Science Foundation of Shandong Province ZR2018MB043the Fundamental Research Funds of Shandong University 2018JC027Shandong Province Key Research and Development Program 2019GSF109037

Figures(4)

  • Hexachlorocyclopentadiene (HCCP) is one of the chlorinated and highly reactive pollutants, which can be released into the atmosphere and undergo chemical transformations. In this paper, the initiated reaction mechanisms of HCCP with typical atmospheric oxidants (•NO3, •HO2, •OH, and O3) were theoretically investigated. The results mean that all initiated reactions are exothermic, and the energy barriers do not exceed 16 kcal⋅mol-1. The rate constants of HCCP reaction triggered by •NO3, •HO2, •OH, and O3 are 2.49 × 10-12, 2.44 × 10-22, 2.46 × 10-13 and 1.33 × 10-20 cm3⋅molecule-1⋅s-1 at 298 K, respectively. It can be concluded that the reaction of •NO3 and •OH with HCCP more likely occurs according to the rate constants. Then the subsequent reactions of the •NO3/•OH-initiated intermediates with O2 and NO were calculated, resulting in that the cyclopentadiene is ruptured completely. And the results show that the Criegee intermediates created in the ozonization reactions of HCCP can react with O2, NO2 and SO2. This study gives more insight into the chemical transformation mechanisms of HCCP in the atmosphere.
  • 加载中
    1. [1]

      McBee, E. T.; Hatton, R. E. Production of hexachlorobutadiene. Ind. Eng. Chem. 1949, 41, 809−812.  doi: 10.1021/ie50472a031

    2. [2]

      Dharmarathne, N. K.; Mackie, J. C.; Kennedy, E. M.; Stockenhuber, M. Mechanism and rate of thermal decomposition of hexachlorocyclopentadiene and its importance in PCDD/F formation from the combustion of cyclodiene pesticides. J. Phys. Chem. A 2017, 121, 5871−5883.  doi: 10.1021/acs.jpca.7b05209

    3. [3]

      Robitschek, P.; Bean, C. T. Flame-resistant polyesters from hexachlorocyclopentadiene. Ind. Eng. Chem. 1954, 46, 1628−1632.  doi: 10.1021/ie50536a034

    4. [4]

      Zhang, C.; Wang, D.; Song, J.; Li, C.; Mo, Y. Bonding of Diels-Alder reactions of substituted 2-borabicyclo(1.1. 0)but-1(3)-enes: a theoretical study. Theor. Chem. Acc. 2019, 138, 106−5.  doi: 10.1007/s00214-019-2491-5

    5. [5]

      Lu, P. Y.; Metcalf, R. L.; Hirwe, A. S.; Williams, J. W. Evaluation of environmental distribution and fate of hexachlorocyclopentadiene, chlordene, heptachlor, and heptachlor epoxide in a laboratory model ecosystem. J. Agric. Food Chem. 1975, 23, 967−973.  doi: 10.1021/jf60201a016

    6. [6]

      Podowski, A. A.; Sclove, S. L.; Pilipowicz, A.; Khan, M. A. Q. Biotransformation and disposition of hexachlorocyclopentadiene in fish. Arch. Environ. Contam. Toxicol. 1991, 20, 488−496.  doi: 10.1007/BF01065837

    7. [7]

      Rand, G. M.; Nees, P. O.; Calo, C. J.; Alexander, D. J.; Clark, G. C. Effects of inhalation exposure to hexachlorocyclopentadiene on rats and monkeys. J. Toxicol. Env. Health Part A 1982, 9, 743−760.  doi: 10.1080/15287398209530201

    8. [8]

      Abdo, K. M.; Montgomery, C. A.; Kluwe, W. M.; Farnell, D. R.; Prejean, J. D. Toxicity of hexachlorocyclopentadiene: subchronic (13-week) administration by gavage to F344 rats and B6C3F1, mice. J. Appl. Toxicol. 1984, 4, 75−81.  doi: 10.1002/jat.2550040204

    9. [9]

      Spehar, R. L.; Veith, G. D.; DeFoe, D. L.; Bergstedt, B. V. Toxicity and bioaccumulation of hexachlorocyclopentadiene, hexachloronorbornadiene and heptachloronorbornene in larval and early juvenile fathead minnows, Pimephales promelas. Bull. Environ. Contam. Toxicol. 1979, 21, 576−583.  doi: 10.1007/BF01685472

    10. [10]

      Dharmarathne, N. K.; Mackie, J. C.; Lucas, J.; Kennedy, E. M.; Stockenhuber, M. Mechanisms of thermal decomposition of cyclodiene pesticides, identification and possible mitigation of their toxic products. Proc. Combust. Inst. 2019, 37, 1143−1150.  doi: 10.1016/j.proci.2018.06.121

    11. [11]

      Sun, X.; Zhang, C.; Zhao, Y.; Bai, J.; Zhang, Q.; Wang, W. Atmospheric chemical reactions of 2, 3, 7, 8-tetrachlorinated dibenzofuran initiated by an OH radical: mechanism and kinetics study. Environ. Sci. Technol. 2012, 46, 8148−8155.  doi: 10.1021/es301413v

    12. [12]

      Lin, L. F.; Lee, W. J.; Li, H. W.; Wang, M. S.; Chang-Chien, G. P. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 2007, 68, 1642−1649.  doi: 10.1016/j.chemosphere.2007.04.002

    13. [13]

      Yan, M.; Qi, Z.; Yang, J.; Li, X.; Ren, J.; Xu, Z. Effect of ammonium sulfate and urea on PCDD/F formation from active carbon and possible mechanism of inhibition. J. Environ, Sci. 2014, 26, 2277−2282.  doi: 10.1016/j.jes.2014.09.012

    14. [14]

      Nubbe, M. E.; Adams, V. D.; Moore, W. M. The direct and sensitized photo-oxidation of hexachlorocyclopentadiene. Water Res. 1995, 29, 1287−1293.  doi: 10.1016/0043-1354(94)00276-D

    15. [15]

      Wolfe, N. L.; Zepp, R. G.; Schlotzhauer, P.; Sink, M. Transformation pathways of hexachlorocyclopentadiene in the aquatic environment. Chemosphere 1982, 11, 91−101.  doi: 10.1016/0045-6535(82)90160-6

    16. [16]

      Stemmler, E. A.; Hites, R. A. Methane enhanced negative ion mass spectra of hexachlorocyclopentadiene derivatives. Anal Chem. 1985, 57, 684−692.  doi: 10.1021/ac00280a025

    17. [17]

      Shi, J.; Liu, H.; Sun, L.; Hou, H.; Xu, Y.; Wang, Z. Theoretical study on hydrophilicity and thermodynamic properties of polyfluorinated dibenzofurans. Chemosphere 2011, 84, 296−304.  doi: 10.1016/j.chemosphere.2011.04.016

    18. [18]

      Zhou, Q.; Sun, X.; Gao, R.; Hu, J. Mechanism and kinetic properties for OH-initiated atmospheric degradation of the organophosphorus pesticide diazinon. Atmos. Environ. 2011, 45, 3141−3148.  doi: 10.1016/j.atmosenv.2011.02.064

    19. [19]

      Gao, R.; Sun, X.; Yu, W.; Zhang, Q.; Wang, W. Mechanism and rate constants for complete series reactions of 19 fluorophenols with atomic H. J. Environ. Sci. 2014, 26, 154−159.  doi: 10.1016/S1001-0742(13)60392-7

    20. [20]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT 2009.

    21. [21]

      Wang, Y.; Verma, P.; Jin, X.; Truhlar, D. G.; He, X. Revised M06 density functional for main-group and transition-metal chemistry. Proc. Natl. Acad. Sci. U. S. A 2018, 115, 10257−10262.  doi: 10.1073/pnas.1810421115

    22. [22]

      Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.  doi: 10.1007/s00214-007-0310-x

    23. [23]

      Li, C.; Xie, H. B.; Chen, J.; Yang, X.; Zhang, Y.; Qiao, X. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination. Environ. Sci. Technol. 2014, 48, 13808−13816.  doi: 10.1021/es504339r

    24. [24]

      Zheng, J.; Frisch, M. J. Efficient geometry minimization and transition structure optimization using interpolated potential energy surfaces and iteratively updated hessians. J. Chem. Theory Comput. 2017, 13, 6424−6432.  doi: 10.1021/acs.jctc.7b00719

    25. [25]

      Hratchian, H. P.; Schlegel, H. B. Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J. Chem. Theory Comput. 2005, 1, 61−69.  doi: 10.1021/ct0499783

    26. [26]

      Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic reaction coordinate: calculation, bifurcation, and automated search. Int. J. Quantum Chem. 2015, 115, 258−269.  doi: 10.1002/qua.24757

    27. [27]

      Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 1996, 100, 12771−12800.  doi: 10.1021/jp953748q

    28. [28]

      Pechukas, P. Transition state theory. Annu. Rev. Phys. Chem. 1981, 32, 159−177.  doi: 10.1146/annurev.pc.32.100181.001111

    29. [29]

      Berndt, T.; Böge, O. Atmospheric reaction of OH radicals with 1, 3-butadiene and 4-hydroxy-2-butenal. J. Phys. Chem. A 2007, 111, 12099−12105.  doi: 10.1021/jp075349o

    30. [30]

      Cheng, G. J.; Zhang, X.; Chung, L. W.; Xu, L.; Wu, Y. D. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J. Am. Chem. Soc. 2015, 137, 1706−1725.  doi: 10.1021/ja5112749

    31. [31]

      Truong, T. N. Reaction class transition state theory: hydrogen abstraction reactions by hydrogen atoms as test cases. J. Chem. Phys. 2000, 113, 4957−4964.  doi: 10.1063/1.1287839

    32. [32]

      Canneaux, S.; Bohr, F.; Henon, E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J. Comput. Chem. 2014, 35, 82−93.  doi: 10.1002/jcc.23470

    33. [33]

      Lan, Y.; Wheeler, S. E.; Houk, K. N. Extraordinary difference in reactivity of ozone (OOO) and sulfur dioxide (OSO): a theoretical study. J. Chem. Theory Comput. 2011, 7, 2104−2111.  doi: 10.1021/ct200293w

    34. [34]

      Wadt, W. R.; Goddard, W. A. Electronic structure of the Criegee intermediate. Ramifications for the mechanism of ozonolysis. J. Am. Chem. Soc. 1975, 97, 3004−3021.  doi: 10.1021/ja00844a016

    35. [35]

      Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 2015, 115, 13051−13092.  doi: 10.1021/cr500310b

    36. [36]

      Tsuji, M.; Kawahara, T.; Uto, K.; Hayashi, J.; Tsuji, T. Photochemical removal of NO2 in air at atmospheric pressure using side-on type 172-nm Xe2 excimer lamp. Int. J. Environ. Sci. Technol. 2019, 16, 5685−5694.  doi: 10.1007/s13762-018-2131-y

    37. [37]

      Zelenov, V. V.; Aparina, E. V.; Kozlovskiy, V. I.; Sulimenkov, I. V.; Nosyrev, A. E. Kinetics of NO3 uptake on pyrene as a representative organic aerosols. Russ. J. Phys. Chem. B 2018, 12, 343−351.  doi: 10.1134/S1990793118020136

    38. [38]

      Li, W.; Chen, Y.; Tong, S.; Guo, Y.; Zhang, Y.; Ge, M. Kinetic study of the gas-phase reaction of O3 with three unsaturated alcohols. J. Environ. Sci. 2018, 71, 292−299.  doi: 10.1016/j.jes.2018.04.009

    39. [39]

      Logan, J. A. Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. Journal of Geophysical Research: Atmos 1985, 90, 10463−10482.  doi: 10.1029/JD090iD06p10463

    40. [40]

      Lawrence, M. G.; Jöckel, P.; von Kuhlmann, R. What does the global mean OH concentration tell us? Atmos. Chem. Phys. 2001, 1, 37−49.  doi: 10.5194/acp-1-37-2001

    41. [41]

      Holland, F.; Hofzumahaus, A.; Schäfer, J.; Kraus, A.; Pätz, H. W. Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ. J. Geophys. Res. Atmos. 2003, 108, 2−23.

    42. [42]

      Vrekoussis, M.; Kanakidou, M.; Mihalopoulos, N.; Crutzen, P. J.; Lelieveld, J.; Perner, D.; Berresheim, H.; Baboukas, E. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign. Atmos. Chem. Phys. 2004, 4, 169−182.  doi: 10.5194/acp-4-169-2004

    43. [43]

      Horie, O.; Moortgat, G. K. Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes. Atmos. Environ. 1991, 25, 1881−1896.  doi: 10.1016/0960-1686(91)90271-8

    44. [44]

      Taatjes, C. A.; Meloni, G.; Selby, T. M.; Trevitt, A. J.; Osborn, D. L.; Percival, C. J.; Shallcross, D. E. Direct observation of the gas-phase Criegee intermediate (CH2OO). J. Am. Chem. Soc. 2008, 130, 11883−11885.  doi: 10.1021/ja804165q

    45. [45]

      Jiang, L.; Xu, Y. S.; Ding, A. Z. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study. J. Phys. Chem. A 2010, 114, 12452−12461.  doi: 10.1021/jp107783z

    46. [46]

      Long, B.; Bao, J. L.; Truhlar, D. G. Atmospheric chemistry of Criegee intermediates: unimolecular reactions and reactions with water. J. Am. Chem. Soc. 2016, 138, 14409−14422.  doi: 10.1021/jacs.6b08655

    47. [47]

      Richter, A.; Burrows, J. P. Tropospheric NO2 from GOME measurements. Adv. Space Res. 2002, 29, 1673−1683.  doi: 10.1016/S0273-1177(02)00100-X

  • 加载中
    1. [1]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    4. [4]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    5. [5]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    6. [6]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    7. [7]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    10. [10]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    11. [11]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    12. [12]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    13. [13]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    14. [14]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    15. [15]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    16. [16]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

Metrics
  • PDF Downloads(2)
  • Abstract views(358)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return