Citation: Zi-Bin CHEN, Bing-Ben CHEN, Jian-Wen CHENG. Luminescent Lanthanide-titanium-organic Compound Constructed by Tetra-nuclear Ln-Ti Building Units and Diphenylglycolic Acid[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 182-186. doi: 10.14102/j.cnki.0254–5861.2011–2805 shu

Luminescent Lanthanide-titanium-organic Compound Constructed by Tetra-nuclear Ln-Ti Building Units and Diphenylglycolic Acid

  • Corresponding author: Jian-Wen CHENG, jwcheng@zjnu.cn
  • Received Date: 16 March 2020
    Accepted Date: 18 May 2020

    Fund Project: the NNSF of China 21975224

Figures(2)

  • Under solvothermal conditions with the mixed solvents of C2H5OH and H2O, a new heterometallic lanthanide-titanium-organic compound, [TbTi(μ3-O)(L3)(H2O)4]·H3O (1, H2L = diphenylglycolic acid), has been synthesized. Compound 1 exhibits a 3D supramolecular framework by incorporating the tetra-nuclear [Tb2Ti2(μ3-O)2] unit and L2- ligand. Compound 1 shows intense green luminescence. Furthermore, the PXRD, TGA and IR spectra were also studied.
  • 加载中
    1. [1]

      Zhang, S. W.; Cheng, P. Recent advances in the construction of lanthanide-copper heterometallic metal-organic frameworks. CrystEngComm. 2015, 17, 4250–4271.  doi: 10.1039/C5CE00237K

    2. [2]

      Chen, W. P.; Liao, P. Q.; Yu, Y. Z.; Zheng, Z. P.; Chen, X. M.; Zheng, Y. Z. A mixed-ligand approach for a gigantic and hollow heterometallic cage {Ni64RE96} for gas separation and magnetic cooling applications. Angew. Chem., Int. Ed. 2016, 55, 9375-9379.  doi: 10.1002/anie.201603907

    3. [3]

      Zhu, Z. H.; Guo, M.; Li, X. L.; Tang, J. K. Molecular magnetism of lanthanide: advances and perspectives. Coord. Chem. Rev. 2019, 378, 350-364.  doi: 10.1016/j.ccr.2017.10.030

    4. [4]

      (a) Cheng, J. W.; Zheng, S. T.; Yang, G. Y. Incorporating distinct metal clusters to construct diversity of 3D pillared-layer lanthanide-transition-metal frameworks. Inorg. Chem. 2008, 47, 4930-4935.
      (b) Cheng, J. W.; Zheng, S. T.; Yang, G. Y. A series of lanthanide-transition metal frameworks based on 1-, 2-, and 3D metal-organic motifs linked by different 1D copper(I) halide. Inorg. Chem. 2007, 46, 10261-10267.

    5. [5]

      (a) Gu, X. Y.; Jin, C. C.; Cheng, J. W. A series of lanthanide-organic frameworks constructed by Ln4(OH)4 clusters and mixed ligands. Chin. J. Struct. Chem. 2019, 38, 103-108.
      (b) Jin, C. C.; Chen, Z. B.; Cheng, J. W. An unusual (3, 11)-connected network constructed by tri-nuclear lanthanide building units and mixed ligands. Chin. J. Struct. Chem. 2020, 39, 104-109.

    6. [6]

      Cheng, J. W.; Yang, G. Y. Hydrothermal synthesis of lanthanide and lanthanide-transition-metal cluster organic frameworks via synergistic coordination strategy. Struct. Bond. 2017, 173, 97–120.

    7. [7]

      Zheng, X. Y.; Zhang, H.; Wang, Z. X.; Liu, P. X.; Du, M. H.; Han, Y. Z.; Wei, R. J.; Ouyang, Z. W.; Kong, X. J.; Zhuang, G. L.; Long, L. S.; Zheng, L. S. New insight into magnetic interaction in monodisperse Gd12Fe14 metal cluster. Angew. Chem., Int. Ed. 2017, 56, 11475-11479.  doi: 10.1002/anie.201705697

    8. [8]

      Liu, D. P.; Peng, J. B.; Lin, X. P.; Huang, Q.; Kong, X. J.; Long, L. S.; Huang, R. B.; Zheng, L. S. Myo-inositol supported heterometallic Dy24M2 (M = Ni, Mn) cages. CrystEngComm. 2014, 16, 5527-5530.  doi: 10.1039/C4CE00362D

    9. [9]

      Zhang, Z. M.; Pan, L. Y.; Lin, W. Q.; Leng, J. D.; Guo, F. S.; Chen, Y. C.; Liu, J. L.; Tong, M. L. Wheel-shaped nanoscale 3d-4f {Co16Ln24} clusters (Ln = Dy and Gd). Chem. Commun. 2013, 49, 8081-8083.  doi: 10.1039/c3cc45075a

    10. [10]

      Zhou, Y. F.; Hong, M. C.; Wu, X. T. Lanthanide-transition metal coordination polymers based on multiple N and O-donor ligands. Chem. Commun. 2006, 135–143.

    11. [11]

      Huang, Y. G.; Jiang, F. L.; Hong, M. C. Magnetic lanthanide-transition-metal organic-inorganic hybrid materials: from discrete clusters to extended frameworks. Coord. Chem. Rev. 2009, 253, 2814–2834.  doi: 10.1016/j.ccr.2009.05.007

    12. [12]

      Xiang, S. C.; Hu, S. M.; Sheng, T. L.; Fu, R. B.; Wu, X. T.; Zhang, X. D. A fan-shaped polynuclear Gd6Cu12 amino acid cluster: a "hollow" and ferromagnetic [Gd6(μ3-OH)8] octahedral core encapsulated by six [Cu2] glycinato blade fragments. J. Am. Chem. Soc. 2007, 129, 15144–15146.  doi: 10.1021/ja0760832

    13. [13]

      Zhang, M. B.; Zhang, J.; Zheng, S. T.; Yang, G. Y. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper lefts by isonicotinate ligands. Angew Chem. Int. Ed. 2005, 44, 1385–1388.  doi: 10.1002/anie.200461424

    14. [14]

      (a) Fang, W. H.; Yang, G. Y. Induced aggregation and synergistic coordination strategy in cluster organic architectures. Acc. Chem. Res. 2018, 51, 2888-2896.
      (b) Fang, W. H.; Cheng, J. W.; Yang, G. Y. Two series of sandwich frameworks based on two different kinds of nanosized lanthanide(Ⅲ) and copper(I) wheel cluster units. Chem. Eur. J. 2014, 20, 2704 –2711.

    15. [15]

      (a) Cheng, J. W.; Zhang, J.; Zheng, S. T.; Zhang, M. B.; Yang, G. Y. Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. Angew Chem. Int. Ed. 2006, 45, 73–77.
      (b) Cheng, J. W; Zhang, J.; Zheng, S. T.; Yang, G. Y. Linking two distinct layered networks of nanosized {Ln18} and {Cu24} wheels through isonicotinate ligands. Chem. Eur. J. 2008, 14, 88–97.

    16. [16]

      Kong, X. J.; Long, L. S.; Zheng, Z. P.; Huang, R. B.; Zheng, L. S. Keeping the ball rolling: fullerene-like molecular clusters. Acc. Chem. Res. 2010, 43, 201-209.  doi: 10.1021/ar900089k

    17. [17]

      Zheng, X. Y.; Kong, X. J.; Zheng, Z. P.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers. Acc. Chem. Res. 2018, 51, 517-525.  doi: 10.1021/acs.accounts.7b00579

    18. [18]

      Kong, X. J.; Ren, Y. P.; Long, L. S.; Zheng, Z. P.; Huang, R. B.; Zheng, L. S. A keplerate magnetic cluster featuring an icosidodecahedron of Ni(Ⅱ) ions encapsulating a dodecahedron of La(Ⅲ) ions. J. Am. Chem. Soc. 2007, 129, 7016-7017.  doi: 10.1021/ja0726198

    19. [19]

      Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.  doi: 10.1039/C7CS00511C

    20. [20]

      (a) Lu, D. F.; Hong, Z. F.; Xie, J.; Kong, X. J.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-titanium oxo clusters as luminescent molecular thermometers with high quantum yields. Inorg. Chem. 2017, 56, 12186-12192.
      (b) Lu, D. F.; Kong, X. J.; Lu, T.; Long, L. B.; Zheng, L. S. Heterometallic lanthanide-titanium oxo clusters: a new family of water oxidation catalysts. Inorg. Chem. 2017, 56, 1057-1060.
      (c) Zheng, H.; Du, M. H.; Lin, S. C.; Tang, Z. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew. Chem. Int. Ed. 2018, 57, 10976–10979.

    21. [21]

      Lv, Y. K.; Willkomm, J.; Leskes, M.; Steiner, A.; King, T. C.; Gan, L.; Reisner, E.; Wood, P. T.; Wright, D. S. Formation of Ti28Ln cages, the highest nuclearity polyoxotitanates (Ln = La, Ce). Chem. Eur. J. 2012, 18, 11867-11870.  doi: 10.1002/chem.201201827

    22. [22]

      Zhang, G. L.; Wang, S.; Hou, J. L.; Mo, C.; Que, C. J.; Zhu, Q. Y.; Dai, J. A lanthanide-titanium (LnTi11) oxo-cluster, a potential molecule based fluorescent labelling agent and photocatalyst. Dalton Trans. 2016, 45, 17681-17686.  doi: 10.1039/C6DT03034C

    23. [23]

      Wang, S.; Su, H. C.; Yu, L.; Zhao, X. W.; Qian, L. W.; Zhu, Q. Y.; Dai, J. Fluorescence and energy transfer properties of heterometallic lanthanide-titanium oxo clusters coordinated with anthracenecarboxylate ligands. Dalton Trans. 2015, 44, 1882-1888.

    24. [24]

      Chen, W. P.; Singleton, J.; Qin, L.; Camón, A.; Engelhardt, L.; Luis, F.; Winpenny, R. E. P.; Zheng, Y. Z. Quantum monte Carlo simulations of a giant {Ni21Gd20} cage with a S = 91 spin ground state. Nat. Commun. 2018, 9, 2107.

    25. [25]

      (a) Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997;
      (b) Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany 1997.

    26. [26]

      Crystal data for 1: Mr = 992.57, monoclinic, C2/c, a = 19.6099(11), b = 23.3564(11), c = 19.0877(9) Å, V = 8605.6(8) Å3, Z = 8, Dc = 1.532 cm-3, μ = 1.883 mm-1, S = 1.114. The final least-squares refinements converged at R (wR) = 0.0452 (0.1443) and for 8277 reflections with I > 2σ(I).

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    6. [6]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    7. [7]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    8. [8]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    9. [9]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    10. [10]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    11. [11]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    12. [12]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    13. [13]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    16. [16]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    17. [17]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    18. [18]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    19. [19]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    20. [20]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

Metrics
  • PDF Downloads(1)
  • Abstract views(316)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return