Citation: Wu-Wu LI, Min-Yan ZHENG, Yi-Hong GAO, Zun-Ting ZHANG. Argentum 5-Hydroxy-7-methoxy-2-phenyl- 4H-chromen-4-one-6-sulfonate: Synthesis, Crystal Structure and Antitumor Activity[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1898-1905. doi: 10.14102/j.cnki.0254–5861.2011–2791 shu

Argentum 5-Hydroxy-7-methoxy-2-phenyl- 4H-chromen-4-one-6-sulfonate: Synthesis, Crystal Structure and Antitumor Activity

  • Corresponding author: Wu-Wu LI, langyuan2012@126.com
  • Received Date: 2 March 2020
    Accepted Date: 27 April 2020

    Fund Project: Scientific Research Program Funded by Shaanxi Provincial Education Department 18JK0837Natural Science Basic Research Plan Funded by Shaanxi Province of China 2018JM2045Science and Technology Projects of Xianyang City 2017k02-19Scientific Research Project Funded by Xianyang Normal University XSYK18006Qing-Lan Talents Project Funded by Xianyang Normal University XSYQL201904

Figures(5)

  • In order to improve the water solubility and bioavailability of 5-hydroxy-7-methoxyflavone, argentum 5-hydroxy-7-methoxy-2-phenyl-4H-chromen-4-one-6-sulfonate [Ag4(H2O)6](C16H11O4SO3)4·H2O (1, C16H11O4SO3 = 5-hydroxy-7-methoxy-2-phenyl-4H-chromen-4-one-6-sulfonate) was synthesized by sulfonation reaction. The structure of 1 was characterized by FT-IR, elemental analysis and X-ray single-crystal diffraction. Complex 1 belongs to the triclinic system, space group P\begin{document}$ \overline 1 $\end{document}, a = 8.077(4), b = 12.365(4), c = 17.735(7) Å, V = 1685.0(12) Å3, Z = 1, μ = 1.372 mm–1, Dc = 1.936 g/cm3, F(000) = 984, the final R = 0.0819 and wR = 0.2332 with I > 2σ(I). 3D structure of 1 exhibits alternating organic and inorganic regions. O–H⋅⋅⋅O hydrogen bonds and Ag–O coordination interactions exist among crystal water, coordinated water and sulfo group, which constructed an organic zone. Flavone skeletons form organic region of 1. Sulfo group is the bridge linking these two regions. The in vitro antitumor activity of 1 against human lymphoma cells U937 and human breast cancer cells MCF-7 were evaluated with CCK-8 assay. The result shows that 1 showed inhibitory activity against tumour cell U937 and MCF-7, and indicated that flavone sulfonate derivatives may be potential leads for further biological screenings and may generate drug-like molecules.
  • 加载中
    1. [1]

      Chen, G. L.; Fan, M. X.; Wu, J. L.; Li, N.; Guo, M. Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019, 227, 706–712.

    2. [2]

      Arts, I. C. W. A review of the epidemiological evidence on tea, flavonoids, and lung cancer. J. Nutr. 2008, 138, 1561S–1566S.  doi: 10.1093/jn/138.8.1561S

    3. [3]

      Spagnuolo, C.; Moccia, S.; Russo, G. L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem. 2018; 153, 105–115.  doi: 10.1016/j.ejmech.2017.09.001

    4. [4]

      Liu, Y. P.; Tong, J. M.; Tong, Y.; Li, P.; Cui, X. L.; Cao, H. B. In vitro anti-influenza virus effect of total flavonoid from Trollius ledebouri Reichb. J. Int. Med. Res. 2018, 46, 1380–1390.  doi: 10.1177/0300060517750284

    5. [5]

      Raffa, D.; Maggio, B.; Raimondi, M. V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. 2017, 142, 213–228.  doi: 10.1016/j.ejmech.2017.07.034

    6. [6]

      Marchand, L. L. Cancer preventive effects of flavonoids–a review. Biomed. Pharmacother. 2002, 56, 296–301.  doi: 10.1016/S0753-3322(02)00186-5

    7. [7]

      Lim, D. Y.; Jeong, Y.; Tyner, A. L.; Park, J. H. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compoundluteolin. Am. J. Physiol-Gastrointest Liver Physiol. 2007, 292, G66–G75.  doi: 10.1152/ajpgi.00248.2006

    8. [8]

      Tang, Q.; Ji, F. L.; Guo, J. L.; Wang, J. Y.; Li, Y. C.; Bao, Y. M. Directional modification of chrysin for exerting apoptosisand enhancing significantly anti-cancer effects of 10-hydroxycamptothecin. Biomed. Pharmacother 2016, 82, 693–703.  doi: 10.1016/j.biopha.2016.06.008

    9. [9]

      Pichichero, E.; Cicconi, R.; Mattei, M.; Muzi, M. G.; Canini, A. Acacia honey and chrysin reduce proliferation of melanomacells through alterations in cell cycle progression. Int. J. Oncol. 2010, 37, 973–981.
       

    10. [10]

      Salah, N. M.; Souleman, A. M. A.; Shaker K. H.; Hawary S. E.; Elhady F. K. A. Acetylcholinesterase, alpha-Glucosidase and tyrosinase inhibitors from egyptian propolis. Int. J. Pharmacognosy and Phytochem. Res. 2017, 9, 528–536.

    11. [11]

      Thao, N. P.; Luyen, B. T. T.; Kim, J. H.; Jo, A. R.; Yang, S. Y.; Dat, N. T.; Minh, C. V.; Kim, Y. H. Soluble epoxide hydrolase inhibitory activity by rhizomes of Kaempferia parviflora Wall. ex Baker. Med. Chem. Res. 2016, 25, 704–711.  doi: 10.1007/s00044-016-1525-y

    12. [12]

      Chen, F.; Li, H. L.; Tan, Y. F.; Li, Y. H.; Lai, W. Y.; Guan, W. W.; Zhang, J. Q.; Zhao, Y. S.; Qin, Z. M. Identification of known chemicals and their metabolites from Alpinia oxyphylla fruit extract in rat plasma using liquid chromatography/tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring. J. Pharm. Biomed. Anal. 2014, 97, 166–177.  doi: 10.1016/j.jpba.2014.04.037

    13. [13]

      Kuo, W. L.; Liao, H. R.; Chen, J. J. Biflavans, flavonoids, and a dihydrochalcone from the stem wood of Muntingia calabura and their inhibitory activities on neutrophil pro-inflammatory responses. Molecules 2014, 19, 20521–20535.  doi: 10.3390/molecules191220521

    14. [14]

      Cao, X. D.; Ding, Z. S.; Jiang, F. S.; Ding, X. H.; Chen, J. Z.; Chen, S. H.; Lv, G. Y. Antitumor constituents from the leaves of Carya cathayensis. Nat. Prod. Res. 2012, 26, 2089–2094.

    15. [15]

      Zhang, Q.; Cui, C.; Chen, C. Q.; Hu, X. L.; Liu, Y. H.; Fan, Y. H.; Meng, W. H.; Zhao, Q. C. Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J. Ethnopharmacol. 2015, 169, 99–108.  doi: 10.1016/j.jep.2015.03.073

    16. [16]

      Ahmed-Belkacem, A.; Pozza, A.; Muñoz-Martínez, F.; Bates, S. E.; Castanys, S.; Gamarro, F.; Di-Pietro, A.; Pérez-Victoria, J. M. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res. 2005, 65 4852–4860.  doi: 10.1158/0008-5472.CAN-04-1817

    17. [17]

      Oh, S. B.; Hwang, C. J.; Song, S. Y.; Jung, Y. Y.; Yun, H. M.; Sok, C. H.; Sung, H. C.; Yi, J. M.; Park, D. H.; Ham, Y. W.; Han, S. B.; Hwang, B. Y.; Hong, J. T. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of deathreceptor and inactivation of STAT3. Cancer Lett. 2014, 353, 95–103.  doi: 10.1016/j.canlet.2014.07.007

    18. [18]

      Park, M. H.; Hong, J. E.; Park, E. S.; Yoon, H. S.; Seo, D. W.; Hyun, B. K.; Han, S. B.; Ham, Y. W.; Hwang, B. Y.; Hong, J. T. Anticancer effect of tectochrysin in coloncancer cell via suppression of NF-kappaB activityand enhancement of death receptor expression. Mol. Cancer 2015, 14, 1–12.

    19. [19]

      Hou, R.; Han, Y. X.; Fei, Q. L.; Gao, Y.; Qi, R. J.; Cai, R. L.; Qi, Y. Dietary flavone tectochrysin exerts anti-inflammatory action by directly inhibiting MEK1/2 in PS-primed macrophages. Mol. Nutr. Food Res. 2018, 62, 1700288.  doi: 10.1002/mnfr.201700288

    20. [20]

      Petrov, K. G.; Zhang, Y. M.; Carter, M.; Cockerill, G. S.; Dickerson, S.; Gauthier, C. A.; Guo, Y.; Mook-Jr, R. A.; Rusnak, D. W.; Walker, A. L.; Wood, E. R.; Lackey, K. E. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg. Med. Chem. Lett. 2006, 16, 4686–4691.  doi: 10.1016/j.bmcl.2006.05.090

    21. [21]

      Sheldrick, G. M. SADABS, University of Göttingen, Germany 1996.

    22. [22]

      Sheldrick, G. M. SHELX-97, Program Package for Crystal Structure Solution and Refinement. University of Göttingen, Germany 1997.

    23. [23]

      Qian, M. K.; Yang, B. J.; Gu, W. H.; Chen, Z. X.; Chen, X. D; Ye, X. Q. Studies on the active principles of DAN-SHEN I. The structure of sodium tanshinone II-A sulfonate and methylene tanshinquinone. Acta Chim. Sinica 1978, 36, 199–206.

    24. [24]

      Chen, W. Z.; Dong, Y. L.; Wang, C. G.; Ding, G. S. Pharmacological studies of sodium tanshinone II-A sulfonate. Acta Pharm. Sin. 1979, 14, 177–283.

    25. [25]

      Chantrapromma, K.; Pakawatchai, C.; Skelton, B. W.; White, A. H.; Worapatamasri, S. 5-Hydroxy-7-methoxy-2-phenyl-4H-1-benzopyran-4-one (tectochrysin) and 2, 5-dihydroxy-7-methoxy-2-phenyl-2, 3-dihydro-4H-1-benzo-pyran-4-one: isolation from Uvaria rufas and X-ray structures. Aust. J. Chem. 1989, 42, 2289–2293.  doi: 10.1071/CH9892289

    26. [26]

      Liu, H. Y.; Chi, Y. C.; Sun, H. M. Synthesis, crystal structure and luminescence of a novel one-dimensional silver(I) sulfonate complex with pyrazine ligand. Chin. J. Struct. Chem. 2001, 30, 211–215.

    27. [27]

      Parthasarathy, R. Crystal structure of glycylglycine hydrochloride. Acta Cryst. 1969, B25, 509–518.

    28. [28]

      Jeffrey, G. A.; Saenger, W. Hydrogen bonding in biological structures. Springer-Verlag, New York 1991.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(1)
  • Abstract views(363)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return