Citation: Cheng-Dan SHI, Jia-Yue TIAN, Fei-Long JIANG, Qi-Hui CHEN, Mao-Chun HONG. A Novel Co(Ⅱ)-organic Framework with Multiple Active Sites for Selective Gas Adsorption[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 169-174. doi: 10.14102/j.cnki.0254–5861.2011–2784 shu

A Novel Co(Ⅱ)-organic Framework with Multiple Active Sites for Selective Gas Adsorption

  • Corresponding author: Qi-Hui CHEN, chenqh@fjirsm.ac.cn Mao-Chun HONG, hmc@fjirsm.ac.cn
  • Received Date: 24 February 2020
    Accepted Date: 30 March 2020

    Fund Project: the National Natural Science Foundation of China 21871265

Figures(3)

  • A novel metal-organic framework [Co(BTTA)(H2O)2]n (FJI-H24) has been prepared from H2BTTA ligand and CoCl2, and its structure was determined by single-crystal X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. It has relatively narrow pores and high density of open metal ions and free Lewis base sites. Gas adsorption tests demonstrate that FJI-H24 has moderate CO2 (34.0 cm3·g–1) and C2H2 (53.0 cm3·g–1) adsorption capacity, but displays high selectivity of CO2/N2 (87) and C2H2/CH4 (66) under ambient conditions (298 K, 1 atm), which may be attributed to its relatively narrow pores and polar environment. This work will provide a potential strategy for preparing practical porous metal-organic frameworks for gas adsorption and purification.
  • 加载中
    1. [1]

      Trickett, C. A.; Popp, T. M. O.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J.; Kalmutzki, M. J.; Liu, Q.; Baek, J.; Head-Gordon, M. P.; Somorjai, G. A.; Reimer, J. A.; Yaghi, O. M. Identification of the strong Bronsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170−176.  doi: 10.1038/s41557-018-0171-z

    2. [2]

      Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483−493.  doi: 10.1021/acs.accounts.5b00530

    3. [3]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815−5840.  doi: 10.1039/C4CS00010B

    4. [4]

      Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703−723.  doi: 10.1021/cr200217c

    5. [5]

      Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001−1033.  doi: 10.1021/cr200139g

    6. [6]

      Liang, L. F.; Jiang, F. L.; Chen, Q. H.; Yuan, D. Q.; Hong, M. C. Ultra-microporous metal-organic framework with high concentration of free carboxyl groups and Lewis basic sites for CO2 capture at ambient conditions. Chin. J. Struct. Chem. 2019, 38, 559−565.

    7. [7]

      Cui, P. P.; Liu, Y.; Zhai, H. G.; Zhu, J. P.; Yan, W. N.; Yang, Y. M. Two copper-organic frameworks constructed from the flexible dicarboxylic ligands. Chin. J. Struct. Chem. 2020, 39, 368−374.

    8. [8]

      Li, B.; Fang, W. J.; Liu, S. Q.; Zhao, H.; Zhang, J. J. Two novel coordination polymers with (6, 3) topology constructed by an imidazole-containing isophthalic ligand: syntheses, structures and luminescence properties. Chin. J. Struct. Chem. 2020, 39, 110−117.

    9. [9]

      Zhang, J. P.; Zhou, H. L.; Zhou, D. D.; Liao, P. Q.; Chen, X. M. Controlling flexibility of metal-organic frameworks. Nat. Sci. Rev. 2018, 5, 907−919.  doi: 10.1093/nsr/nwx127

    10. [10]

      Chen, K. J.; Madden, D. G.; Pham, T.; Forrest, K. A.; Kumar, A.; Yang, Q. Y.; Xue, W.; Space, B.; Perry, J. J.; Zhang, J. P.; Chen, X. M.; Zaworotko, M. J. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angew. Chem. Int. Ed. 2016, 55, 10268−10272.  doi: 10.1002/anie.201603934

    11. [11]

      Liao, P. Q.; Chen, H.; Zhou, D. D.; Liu, S. Y.; He, C. T.; Rui, Z.; Ji, H.; Zhang, J. P.; Chen, X. M. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 2015, 8, 1011−1016.  doi: 10.1039/C4EE02717E

    12. [12]

      Xue, H.; Song, D.; Liu, C.; Lyu, G.; Yuan, D.; Jiang, F.; Chen, Q.; Hong, M. A porous framework as a variable chemosensor: from the response of a specific carcinogenic alkyl-aromatic to selective detection of explosive nitroaromatics. Chem. Eur. J. 2018, 24, 11033−11041.  doi: 10.1002/chem.201802502

    13. [13]

      Xue, H.; Chen, Q.; Jiang, F.; Yuan, D.; Lv, G.; Liang, L.; Liu, L.; Hong, M. A regenerative metal-organic framework for reversible uptake of Cd(Ⅱ): from effective adsorption to in situ detection. Chem. Sci. 2016, 7, 5983–5988.  doi: 10.1039/C6SC00972G

    14. [14]

      Liang, L.; Chen, Q.; Jiang, F.; Yuan, D.; Qian, J.; Lv, G.; Xue, H.; Liu, L.; Jiang, H. L.; Hong, M. In situ large-scale construction of sulfur-functionalized metal-organic framework and its efficient removal of Hg(Ⅱ) from water. J. Mater. Chem. A 2016, 4, 15370−15374.  doi: 10.1039/C6TA04927C

    15. [15]

      Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 2011, 4, 42−55.  doi: 10.1039/C0EE00064G

    16. [16]

      Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954−9.  doi: 10.1038/ncomms1956

    17. [17]

      Liang, L.; Liu, C.; Jiang, F.; Chen, Q.; Zhang, L.; Xue, H.; Jiang, H. L.; Qian, J.; Yuan, D.; Hong, M. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 2017, 8, 1233−10.  doi: 10.1038/s41467-017-01166-3

    18. [18]

      Pang, J.; Jiang, F.; Wu, M.; Liu, C.; Su, K.; Lu, W.; Yuan, D.; Hong, M. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 2015, 6, 7575−7.  doi: 10.1038/ncomms8575

    19. [19]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339−341.  doi: 10.1107/S0021889808042726

    20. [20]

      Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, 71, 9−18.

    21. [21]

      Cai, H.; Li, N.; Zhang, N.; Yang, Z.; Cao, J.; Lin, Y.; Min, N.; Wang, J. Metal-directed supramolecular architectures based on the bifunctional ligand 2, 5-bis(1H-1, 2, 4-triazol-1-yl)terephthalic acid. Acta Cryst. C 2020, 76, 118−124.  doi: 10.1107/S2053229620000248

    22. [22]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 2012, 149, 134−141.  doi: 10.1016/j.micromeso.2011.08.020

    23. [23]

      Liu, J. M.; Hou, J. X.; Liu, J.; Jing, X.; Li, L. J.; Du, J. Pyrazinyl-functionalized Zr(IV)-MOF for ultrasensitive detection of tyrosine/TNP and efficient CO2/N2 separation. J. Mater. Chem. C 2019, 7, 11851−11857.  doi: 10.1039/C9TC03096D

    24. [24]

      Barbara, S.; Jerzy, C.; Graphene-containing microporous composites for selective CO2 adsorption. Microporous Mesoporous Mater. 2020, 292, 109761−7.  doi: 10.1016/j.micromeso.2019.109761

    25. [25]

      Wang, Y.; He, M.; Gao, X.; Wang, X.; Xu, G.; Zhang, Z.; He, Y. A ligand conformation preorganization approach to construct a copper-hexacarboxylate framework with a novel topology for selective gas adsorption. Inorg. Chem. Front. 2019, 6, 263−270.

    26. [26]

      Zhang, J. W.; Qu, P.; Hu, M. C.; Li, S. N.; Jiang, Y. C.; Zhai, Q. G. Topology-guided design for Sc-soc-MOFs and their enhanced storage and separation for CO2 and C2-hydrocarbons. Inorg. Chem. 2019, 58, 16792−16799.  doi: 10.1021/acs.inorgchem.9b02959

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    6. [6]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    7. [7]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    8. [8]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    9. [9]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    10. [10]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    11. [11]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    16. [16]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    17. [17]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    18. [18]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    19. [19]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    20. [20]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

Metrics
  • PDF Downloads(1)
  • Abstract views(285)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return