Citation: Xiao-Ling WU, Zi-Jian LI, Fang-Dong TANG, Nan QIAN, Xin-Xin CHU, Wei LIU. A Novel Fluorinated Metal-organic Framework for Xenon/Krypton Separation[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 85-90. doi: 10.14102/j.cnki.0254–5861.2011–2776 shu

A Novel Fluorinated Metal-organic Framework for Xenon/Krypton Separation

  • Corresponding author: Xin-Xin CHU, Chuxinxin@sinap.ac.cn Wei LIU, Liuwei@sinap.ac.cn
  • Received Date: 24 February 2020
    Accepted Date: 27 April 2020

    Fund Project: the National Natural Science Foundation of China 51606210Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Science YX2019007Science and Technology Project of Shanghai Municipal Bureau of Quality and Technology Supervision 2017-01

Figures(5)

  • A porous metal-organic framework [C21H20CoF6O7] was synthesized with Co(CH3COO)2·4H2O and CPHFP (2, 2'-bis(4-carboxyphenyl)hexafluoro-propane) under hydrothermal conditions. This FMOF-Co has been characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, single-crystal and powder X-ray diffraction. The crystal is of monoclinic space group P21/n with a = 7.8911(2), b = 29.9053(8), c = 10.5811(3) Å, β = 90.193(10)°, V = 2499.70(12) Å3, Z = 4, Mr= 557.3, Dc= 1.481 g·cm–3, F(000)= 1132, μ = 0.768 mm–1, GOOF = 1.035, the final R = 0.0722 and wR = 0.2326 for 6347 observed reflections with I > 2σ(I). The structure of FMOF-Co is constructed form the linkage of Co(II) through CPHFP, forming a 3D net framework. The Kr and Xe uptake values are 0.225 and 0.484 mmol·g–1 at 303 K (100 KPa) with their mol selectivity to be 0.46; while the Kr and Xe uptake values are 0.486 and 0.077 mmol·g–1 at 233 K (100 KPa), with their mol separation being 6.29 at this condition.
  • 加载中
    1. [1]

      Smith, K. R.; Frumkin, H.; Balakrishnan, K.; Butler, C. D.; Chafe, Z. A.; Fairlie, I.; Kinney, P.; Kjellstrom, T.; Mauzerall, D. L.; McKone, T. E.; McMichael, A. J.; Schneider, M. Energy and human health. Annu. Rev. Public Health 2013, 34, 159–188.  doi: 10.1146/annurev-publhealth-031912-114404

    2. [2]

      Cullen, S. C.; Gross, E. G. The anesthetic properties of xenon in animals and human beings with additional observations on krypton. Science 1951, 113, 580–582.  doi: 10.1126/science.113.2942.580

    3. [3]

      Izumi, J.; Auerbach, S. M.; Carrodo, K. A.; Dutta, P. K. Waste gas treatment using zeolites in nuclear-related industries. In: (Eds. ). Handbook of Zeolites Science and Technology. Marcel Dekker: New York 2003.

    4. [4]

      Kerry, F. G. Industrial Gas Handbook: Gas Separation and Purification; CRC Press: Boca Raton Florida 2007.

    5. [5]

      Yang, R. T.; Adsorbents: fundamentals and Applications. John Wiley & Sons Inc. : Hoboken 2003.

    6. [6]

      Rowsell, J. L. C.; Yaghi, O. M. Metal-organic frameworks: a new class of porous materials. Micropor. Mesopor. Mater. 2004, 73, 3–14.  doi: 10.1016/j.micromeso.2004.03.034

    7. [7]

      Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.  doi: 10.1039/B618320B

    8. [8]

      Bae, Y. S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 2011, 50, 11586–11596.  doi: 10.1002/anie.201101891

    9. [9]

      Wang, M.; Zhuo, C.; He, L.; Lin, Q. P. Synthesis, crystal structure and gas adsorption of a trimeric nickel-based coordination polymer. Chin. J. Struct. Chem. 2019, 38, 345–350.

    10. [10]

      Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-organic framework with optimally selective xenon adsorption and separation. Nature Communications 2016, 7, 11831.  doi: 10.1038/ncomms11831

    11. [11]

      Liu, J.; Thallapally, P. K.; Strachan, D. M. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. Langmuir. 2012, 28, 11584–11589.  doi: 10.1021/la301870n

    12. [12]

      Thallapally, P. K.; Grate, J. W.; Motkuri, R. K. Facial xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal. Chem. Commun. 2012, 48, 347–349.  doi: 10.1039/C1CC14685H

    13. [13]

      Yang, C.; Wang, X. P.; Omary, M. A. Fluorous metal-organic frameworks for high-density gas adsorption. J. Am. Chem. Soc. 2007, 129, 15454–15455.  doi: 10.1021/ja0775265

    14. [14]

      Fernandez, C. A.; Thallapally, P. K.; Motkuri, R. K.; Nune, S. K.; Sumrak, J. C.; Liu, J. Gas-induced expansion and contraction of a fluorinated netak-organic framework. Cryst. Growth Des. 2010, 10, 1037–1039.  doi: 10.1021/cg9014948

    15. [15]

      Liu, Z. Q.; Stren, C. L.; Lambert, J. B. Metal-organic frameworks from dipodal and tripodal silicon-centered tetrahedral ligands. Organometallics 2009, 28, 84–93.  doi: 10.1021/om800678g

    16. [16]

      Thallapally, P. K.; Tian, J.; Kishan, M. R.; Fernandez, C. A.; Dalgarno, S. J.; McGrail, P. B.; Warren, J. E.; Atwood, J. L. Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. J. Am. Chem. Soc. 2008, 130, 16842–16843.  doi: 10.1021/ja806391k

    17. [17]

      Thallapally, P. K.; McGrail, B. P.; McGrail, P. B.; Dalgarno, S. J.; Atwood, J. L. Gas/solvent-induced transformation and expansion of a nonporous solid to 1: 1 host guest form. Cryst. Growth Des. 2008, 8, 2090–2092.  doi: 10.1021/cg800347n

    18. [18]

      Fernandez, C. A.; Liu, J.; Thallapally, P. K.; Strachan, D. M. Switching Kr/Xe selectivity with temperature in a metal-organic framework. J. Am. Chem. Soc. 2012, 134, 9046–9049.  doi: 10.1021/ja302071t

    19. [19]

      Sheldrick, G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structures Solution and Refinement. University of Göttingen, Germany 1997.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(1)
  • Abstract views(316)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return