Citation: Han CHEN, Chun-Hua WU, Yi HUANG, Hua-Hua WU, Jie PANG. A Study on the Preparation of Konjac Glucomannan-silk Fibroin Composite Aerogels and Its Adsorption of Water Pollutant Cr(Ⅲ)[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 23-30. doi: 10.14102/j.cnki.0254–5861.2011–2774 shu

A Study on the Preparation of Konjac Glucomannan-silk Fibroin Composite Aerogels and Its Adsorption of Water Pollutant Cr(Ⅲ)

  • Corresponding author: Chun-Hua WU, chwu0283@163.com Jie PANG, pang3721941@163.com
  • Received Date: 21 February 2021
    Accepted Date: 16 March 2021

    Fund Project: the National Natural Science Foundation of China 31471704the National Natural Science Foundation of China 31772045

Figures(6)

  • It is emergent to develop a green waste water adsorbent with high efficiency. Therefore, a type of low-cost, green and environmentally friendly konjac glucomannan (KGM) -silk fibroin (SF) composite aerogels were compounded via simple chemical grafting and vacuum freeze drying, and a study on its adsorption capacity was also conducted. The characterizations of FT-IR, SEM, XRD and DSC indicate that the modified aerogels show a porous network space structure and there is a strong hydrogen bond effect between the KGM and SF molecules, which improves the density, compressive strength and thermal stability of aerogel materials. The adsorption experiments show that KGM-SF aerogels can effectively adsorb the water pollutants Cr(Ⅲ) with a maximal adsorption capacity of 82 mg·g-1. In addition, the adsorption isotherm and dynamic model analysis are used to elaborate the adsorption mechanism of KGM-SF aerogels and explain that the composite aerogels can be single molecule chemisorption. KGM-SF aerogels have potential adsorption capacity.
  • 加载中
    1. [1]

      Yang, Y.; Zhou, Z. C.; Bai, Y. Y.; Cai, Y. M.; Chen, W. P. Risk assessment of heavy metal pollution in sediments of the fenghe river by the fuzzy synthetic evaluation model and multivariate statistical methods. Pedosphere 2016, 26, 326–334.  doi: 10.1016/S1002-0160(15)60046-7

    2. [2]

      Ratnakar, S.; Bhabagrahi, S. Mapping of heavy metal pollution in river water at daily time-scale using spatio-temporal fusion of MODIS-aqua and Landsat satellite imageries. J. Environ. Manage. 2017, 192, 1–14.  doi: 10.1016/j.jenvman.2017.01.034

    3. [3]

      Sarma, G. K.; Sen Gupta, S.; Bhattacharyya, K. G. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ. Sci. Pollut. R. 2019, 26, 6245–6278.  doi: 10.1007/s11356-018-04093-y

    4. [4]

      Chu, Z. J.; Fan, X. H.; Wang, W. N.; Huang, W. C. Quantitative evaluation of heavy metals' pollution hazards and estimation of heavy metals' environmental costs in leachate during food waste composting. Waste Manage. 2019, 84, 119–128.  doi: 10.1016/j.wasman.2018.11.031

    5. [5]

      Ihsanullaha; Aamir, A.; Adnan, M. A.; Tahar, L.; Mohammed, J. A. M.; Mustafa, S. N.; Majeda, K.; Muataz, A. A. Heavy metal removal from aqueous solution by advanced carbon nanotubes. Sep. Purif. Technol. 2016, 157, 141–161.  doi: 10.1016/j.seppur.2015.11.039

    6. [6]

      Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes. Ecotox. Environ. Safe. 2017, 148, 702–712.

    7. [7]

      Chen, K. L.; Zhang, H. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. Int. J. Biol. Macromol. 2019, 136, 936–943.  doi: 10.1016/j.ijbiomac.2019.06.138

    8. [8]

      Chen, K. L.; Zhang, H. Fabrication of oleogels via a facile method by oil absorption in the aerogel templates of protein-polysaccharide conjugates. ACS Appl. Mater. Inter. 2020, 12, 7795–7804.  doi: 10.1021/acsami.9b21435

    9. [9]

      Borsagli, M.; Fernanda, G. L.; Mansur, A. A. P.; Poliane, C.; Oliveira, L. C. A.; Mansur, H. S. O-carboxymethyl functionalization of chitosan: complexation and adsorption of Cd(II) and Cr(VI) as heavy metal pollutant ions. React. Funct. Polym. 2015, 97, 37–47.  doi: 10.1016/j.reactfunctpolym.2015.10.005

    10. [10]

      Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.  doi: 10.1038/nnano.2012.118

    11. [11]

      Rashid, H.; Yaqub, G. Bioadsorbents and filters for removal of heavy metals in different environmental samples. Nat. Environ. Pollut. Technol. 2017, 16, 1157–1164.

    12. [12]

      Xiao, J. L.; Lv, W. Y.; Song, Y. H.; Zheng, Q. Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem. Eng. J. 2018, 338, 202–210.  doi: 10.1016/j.cej.2017.12.156

    13. [13]

      Liu, Y.; Shi, T. H.; Zhang, T.; Yuan, D. S.; Peng, Y. X.; Qiu, F. X. Cellulose-derived multifunctional nano-CuO/carbon aerogel composites as a highly efficient oil absorbent. Cellulose 2019, 26, 5381–5394.  doi: 10.1007/s10570-019-02484-z

    14. [14]

      Pollanen, J.; Li, J. I. A.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.; Sauls, J. A. New chiral phases of superfluid 3He stabilized by anisotropic silica aerogel. Nat. Phys. 2012, 8, 317–320.  doi: 10.1038/nphys2220

    15. [15]

      Mu, R. J.; Pang, J.; Yuan, Y.; Tan, X. D.; Wang, M.; Chen, H.; Chiang, W. Y. Progress on the structures and functions of aerogels. Chin. J. Struct. Chem. 2016, 35, 487–497.

    16. [16]

      Cesar, M. C. F.; Telma, M.; Durães, L.; Artur, J. M. V. Efficient simultaneous removal of petroleum hydrocarbon pollutants by a hydrophobic silica aerogel-like material. Colloid. Surface. A 2017, 520, 550–560.  doi: 10.1016/j.colsurfa.2017.02.018

    17. [17]

      Robitzer, M.; Tourrette, A.; Horga, R. Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carbohyd. Polym. 2011, 85, 44–53.  doi: 10.1016/j.carbpol.2011.01.040

    18. [18]

      Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Wang, M. Structure and potential application of konjac glucomannan nano microfibril aerogel. Chin. J. Struct. Chem. 2016, 35, 1942–1946.

    19. [19]

      Zhang, Y.; Yang, J. C. E.; Fu, M. L.; Yuan, B. L.; Gupta, K. One-step fabrication of recycled Ag nanoparticles/graphene aerogel with high mechanical property for disinfection and catalytic reduction of 4-nitrophonel. Environ. Technol. 2019, 40, 3381–3391.  doi: 10.1080/09593330.2018.1473503

    20. [20]

      Chen, X.; Fang, D. Y.; Luo, X. L.; Wang, X. S.; Tong, C. L.; Pang, J.; Yan, Z. M.; Zheng, Y. F. Preparation, structures and mechanical properties of bamboo shoot shell nanofiber/konjac glucomannan aerogels. Chin. J. Struct. Chem. 2017, 36, 2051–2057.

    21. [21]

      Wang, J.; Zhao, D.; Shang, K.; Wang, Y. T.; Ye, D. D.; Kang, A. H.; Liao, W.; Wang, Y. Z. Ultrasoft gelatin aerogels for oil contaminant removal. J. Mater. Chem. A 2016, 4, 9381–9389.  doi: 10.1039/C6TA03146C

    22. [22]

      Long, T.; Xu, Y.; Lv, X. J.; Ran, J. W.; Yang, S. B.; Xu, L. Y. Fabrication of the annular photocatalytic reactor using large-sized freestanding titania-silica monolithic aerogel as the catalyst for degradation of glyphosate. Mater. Design 2018, 159, 195–200.  doi: 10.1016/j.matdes.2018.08.047

    23. [23]

      Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.  doi: 10.1126/science.aaf3627

    24. [24]

      Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Lin, H. B.; Ma, Z.; Chiang, W. Y. Influence of topology structure on the stability of konjac glucomannan nano gel microfibril. Chin. J. Struct. Chem. 2015, 34, 1939–1941.

    25. [25]

      Xu, P.; Yao, Q.; Yu, N.; Zhou, Y.; Zhao, F.; Wang, B.; Peng, Z.; Hu, Z. Narrow-dispersed konjac glucomannan nanospheres with high moisture adsorption and desorption ability by inverse emulsion crosslinking. Mater. Lett. 2014, 137, 59–61.  doi: 10.1016/j.matlet.2014.08.126

    26. [26]

      Mu, R. J.; Yuan, Y.; Wang, L.; Ni, Y.; Li, M.; Chen, H.; Pang, J. Microencapsulation of lactobacillus acidophilus with konjac glucomannan hydrogel. Food Hydrocolloid. 2018, 76, 42–48.  doi: 10.1016/j.foodhyd.2017.07.009

    27. [27]

      Li, B.; Wang, Y. H.; Cheng, Y. J.; Ma, X. Y.; Pan, D. M.; Lin, Z. Surface changes of ochrobactrum anthropi in Cr(VI) treatment for I hour. Chin. J. Struct. Chem. 2009, 2, 245–249.

    28. [28]

      Wang, S.; Ning, H. M.; Hu, N.; Huang, K. Y.; Weng, S. Y.; Wu, X. P.; Wu, L. K.; Liu, J.; Alamusi. Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Compos. Part B-Eng. 2019, 163, 716–722.  doi: 10.1016/j.compositesb.2018.12.140

    29. [29]

      Zhao, X.; Li, W.; Zhang, S. S.; Liu, L. H.; Liu, S. X. Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr(III) and Pb(II). Mater. Chem. Phys. 2015, 155, 52–58.  doi: 10.1016/j.matchemphys.2015.01.064

    30. [30]

      Li, K. Q.; Zhou, Y.; Li, J.; Liu, J. M. Soft-templating synthesis of partially graphitic Fe-embedded ordered mesoporous carbon with rich micropores from bayberry kernel and its adsorption for Pb(II) and Cr(III). J. Taiwan Inst. Chem. E. 2018, 82, 312–321.  doi: 10.1016/j.jtice.2017.10.036

    31. [31]

      Žilić, S.; Mogol, B. A.; Akillioǧlu, G.; Serpen, A.; Delić, N.; Gökmen, V. Effects of extrusion, infrared and microwave processing on maillard reaction products and phenolic compounds in soybean. J. Sci. Food Agr. 2014, 94, 45–51.  doi: 10.1002/jsfa.6210

    32. [32]

      Liu, J. H.; Xu, Q. H.; Zhang, J. J.; Zhao, P. C.; Ding, Y. T. Characterization of silver carp (hypophthalmichthys molitrix) myosin protein glycated with konjac oligo-glucomannan. Food Hydrocolloid. 2016, 57, 114–121.  doi: 10.1016/j.foodhyd.2016.01.019

    33. [33]

      Luo, Y. Q.; Ling, Y. Z.; Wang, X. Y.; Han, Y.; Zeng, X. J.; Sun, R. C. Maillard reaction products from chitosan-xylan ionic liquid solution. Carbohyd. Polym. 2013, 98, 835–841.  doi: 10.1016/j.carbpol.2013.06.023

    34. [34]

      Liu, J.; Fang, C.; Xu, X.; Su, Q.; Zhao, P.; Ding, Y. Structural changes of silver carp myosin glycated with konjac oligo-glucomannan: effects of deacetylation. Food Hydrocolloid. 2019, 91, 275–282.  doi: 10.1016/j.foodhyd.2019.01.038

    35. [35]

      Shao, W. Y.; Liu, J. X.; Yang, K. G.; Liang, Y.; Weng, Y. J.; Li, S. W.; Liang, Z.; Zhang, L. H.; Zhang, Y. K. Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment. Talanta 2016, 158, 361–367.  doi: 10.1016/j.talanta.2016.05.034

    36. [36]

      Wang, L.; Du, Y.; Yuan, Y.; Mu, R. J.; Gong, J. N.; Ni, Y. S.; Pang, J.; Wu, C. H. Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior. Int. J. Biol. Macromol. 2018, 113, 285–293.  doi: 10.1016/j.ijbiomac.2018.02.083

    37. [37]

      Li, K.; Zhou, M.; Liang, L.; Jiang, L.; Wang, W. Ultrahigh-surface-area activated carbon aerogels derived from glucose for high-performance organic pollutants adsorption. J. Colloid Interf. Sci. 2019, 546, 333–343.  doi: 10.1016/j.jcis.2019.03.076

    38. [38]

      Liu, S. L.; Yao, F.; Olayinka, O.; Zhang, Z. H.; Fu, G. D. Green synthesis of oriented xanthan gum-graphene oxide hybrid aerogels for water purification. Carbohyd. Polym. 2017, 174, 392–399.  doi: 10.1016/j.carbpol.2017.06.044

    39. [39]

      Zhang, T.; Xue, Y.; Li, Z. J.; Wang, Y. M.; Xue, C. H. Effects of deacetylation of konjac glucomannan on Alaska Pollock surimi gels subjected to high-temperature (120 degrees C) treatment. Food Hydrocolloid. 2015, 43, 125–131.  doi: 10.1016/j.foodhyd.2014.05.008

    40. [40]

      Tang, H. B.; Wang, L.; Li, Y. P.; Dong, S. Q. Effect of acidolysis and oxidation on structure and properties of konjac glucomannan. Int. J. Biol. Macromol. 2019, 130, 378–387.  doi: 10.1016/j.ijbiomac.2019.02.048

    41. [41]

      Fan, S. S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. D. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441.  doi: 10.1016/j.molliq.2016.04.107

    42. [42]

      Araújo, C. S. T.; Almeida, I. L. S.; Rezende, H. C.; Marcionilio, S. M. L. O.; Léon, J. J. L.; Matos, T. N. D. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 2018, 137, 348–354.  doi: 10.1016/j.microc.2017.11.009

    43. [43]

      Hu, Q. H.; Xiao, Z. J.; Xiong, X. M.; Zhou, G. M.; Guan, X. H. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics. J. Environ. Sci. 2015, 27, 207–216.  doi: 10.1016/j.jes.2014.05.036

    44. [44]

      Ge, K.; Yu, Q.; Chen, S.; Shi, X.; Wang, J. Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes. Chem. Eng. J. 2019, 364, 328–339.  doi: 10.1016/j.cej.2019.01.183

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    3. [3]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    9. [9]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    10. [10]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    11. [11]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    12. [12]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    13. [13]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    16. [16]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    17. [17]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    18. [18]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    19. [19]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    20. [20]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

Metrics
  • PDF Downloads(2)
  • Abstract views(408)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return