Citation: Shan-Shan GUO, Lv-Lan HUANG, Ying-Xiang YE, Li-Zhen LIU, Zi-Zhu YAO, Sheng-Chang XIANG, Jin-Dan ZHANG, Zhang-Jing ZHANG. Carbazole Based Anionic MOF for Proton Conductivity[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 55-60. doi: 10.14102/j.cnki.0254–5861.2011–2761 shu

Carbazole Based Anionic MOF for Proton Conductivity

  • Corresponding author: Sheng-Chang XIANG, scxiang@fjnu.edu.cn Jin-Dan ZHANG, zhangjindan@fjnu.edu.cn Zhang-Jing ZHANG, zzhang@fjnu.edu.cn
  • Received Date: 10 February 2020
    Accepted Date: 29 February 2020

    Fund Project: the National Natural Science Foundation of China 21673039the National Natural Science Foundation of China 21573042the National Natural Science Foundation of China 21805039the National Natural Science Foundation of China 21975044the National Natural Science Foundation of China 21971038the Fujian Provincial Department of Science and Technology 2018J07001the Fujian Provincial Department of Science and Technology 2019H6012Education Department of Fujian province JT180090

Figures(3)

  • A non-interpenetrated anionic In-MOF (FJU-302) based on a linear H2bpdc and an angled H2cdc as dual-ligands was characterized by FT-IR, TGA and X-ray single-crystal/powder diffraction. FJU-302 crystallizes in the monoclinic system and I41/amd space group with a = 27.1274(8), b = 27.1274(8), c = 29.788(3) Å, V = 21921(2) Å3, Z = 16, Mr = 608.32, Dc = 0.737 g/cm3, F(000) = 4848, μ(Cu) = 3.659 mm–1, R = 0.0800 and wR = 0.1911 for 5703 observed reflections (I > 2σ(I)), and R = 0.1470 and wR = 0.2342 for all data. In this work, a carbazole based anionic In-MOF (FJU-302) was designed and synthesized, and the proton conductivity from subzero temperature (–30 ℃) to 70 ℃ was measured without additional humidity. FJU-302 presents a max proton conductivity of 6.47 × 10–4 S·cm–1 at 70 ℃, and it can maintain 5.88 × 10–7 S·cm–1 at –30 ℃. This work reports a first carbazole based MOF for proton conductivity at subzero temperature conditions.
  • 加载中
    1. [1]

      Qin, Y.; Xue, M. H.; Dou, B.; Sun, Z.; Li, G. High protonic conduction in two metal-organic frameworks contained high-density carboxylic groups. New J. Chem. 2020, 44, 2741–2748.  doi: 10.1039/C9NJ05735H

    2. [2]

      Liu, R. L.; Shi, Z. Q.; Wang, X. Y.; Li, Z. F.; Li, G. Two highly stable proton conductive cobalt(Ⅱ)-organic frameworks as impedancesensors for formic acid. Chem. Eur. J. 2019, 25, 14108–14116.  doi: 10.1002/chem.201902169

    3. [3]

      Lu, W. G.; Yuan, D. Q.; Makal, T. A.; Li, J. R.; Zhou, H. C. A highly porous and robust (3, 3, 4)-connected metal-organic framework assembled with a 90o bridging-angle embedded octacarboxylate ligand. Angew. Chem. Int. Ed. 2012, 51, 1580–1584.  doi: 10.1002/anie.201106615

    4. [4]

      Thomas, K. M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans. 2009, 9, 1487–1505.

    5. [5]

      Li, J. R.; Timmons, D. J.; Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 6368–6369.  doi: 10.1021/ja901731z

    6. [6]

      Krause, S.; Bon, V.; Stoeck, U.; Senkovska, I.; Tçbbens, D. M.; Wallacher, D.; Kaskel, S. A stimuli-responsive zirconium metal-organic framework based on supermolecular design. Angew. Chem. Int. Ed. 2017, 56, 10676–10680.  doi: 10.1002/anie.201702357

    7. [7]

      Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedral. Nat. Chem. 2010, 2, 893–898.  doi: 10.1038/nchem.803

    8. [8]

      Taylor, J. M.; Dekura, S.; Ikeda, R.; Kitagawa, H. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 2015, 27, 2286–2289.  doi: 10.1021/acs.chemmater.5b00665

    9. [9]

      Umeyama, D.; Horike, S.; Inukai, M.; Kitagawa, S. Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J. Am. Chem. Soc. 2013, 135, 11345–11350.  doi: 10.1021/ja4051668

    10. [10]

      Lai, X. Y.; Liu, Y. W.; Yang, G. C.; Liu, S. M.; Shi, Z.; Lu, Y.; Luo, F.; Liu, S. X. Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal-organic framework. J. Mater. Chem. A 2017, 5, 9611–9617.  doi: 10.1039/C6TA10958F

    11. [11]

      Li, J. R.; Timmons, D. J.; Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 18, 6368–6369.

    12. [12]

      Liu, L. Z.; Yao, Z. Z.; Ye, Y. X.; Lin, Q. J.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. Enhanced intrinsic proton conductivity of metal-organic frameworks by tuning the degree of interpenetration. Cryst. Growth Des. 2018, 18, 3724–3728.  doi: 10.1021/acs.cgd.8b00545

    13. [13]

      Stoeck, U.; Krause, S.; Bon, V.; Senkovska, I.; Kaskel, S. A highly porous metal-organic framework, fonstructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem. Commun. 2012, 48, 10841–10843.  doi: 10.1039/c2cc34840c

    14. [14]

      Stoeck, U.; Senkovska, I.; Bon, V.; Krause, S.; Kaskel, S. Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery. Chem. Commun. 2015, 51, 1046–1049.  doi: 10.1039/C4CC07920E

    15. [15]

      Li, J. R.; Timmons, D. J.; Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 6368–6369.  doi: 10.1021/ja901731z

    16. [16]

      Li, J. R.; Zhou, H. C. Metal-organic hendecahedra assembled from dinuclear paddlewheel nodes and mixtures of ditopic linkers with 120 and 90o bend angles. Angew. Chem. Int. Ed. 2009, 121, 8617–8620.  doi: 10.1002/ange.200904722

    17. [17]

      Zhao, X.; Mao, C. Y.; Bu, X. H.; Feng, P. Y. Direct observation of two types of proton conduction tunnels coexisting in a new porous indium-organic framework. Chem. Mater. 2014, 26, 2492–2495.  doi: 10.1021/cm500473f

    18. [18]

      Ye, Y. X.; Guo, W. G.; Wang, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604–15607.  doi: 10.1021/jacs.7b09163

    19. [19]

      Ye, Y. X.; Zhang, L. Q.; Peng, Q. F.; Wang, G. E.; Shen, Y. C.; Li, Z. Y.; Wang, L. H.; Ma, X. L.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J. Am. Chem. Soc. 2015, 137, 913–918.  doi: 10.1021/ja511389q

    20. [20]

      Zhao, S. N.; Zhang, Y.; Song, S. Y.; Zhang, H. J. Design strategies and applications of charged metal organic frameworks. Coord. Chem. Rev. 2019, 398, 113007.  doi: 10.1016/j.ccr.2019.07.004

    21. [21]

      Nagarkar, S. S.; Unni, S. M.; Sharma, A.; Kurungot, S.; Ghosh, S. K. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Angew. Chem. Int. Ed. 2014, 53, 2638–2642.  doi: 10.1002/anie.201309077

    22. [22]

      Su, X. L.; Yao, Z. Z.; Ye, Y. X.; Zeng, H.; Xu, G.; Wu, L.; Ma, X. L.; Chen, Q. H.; Wang, L. H.; Zhang, Z. J.; Xiang, S. C. 40-Fold enhanced intrinsic proton conductivity in coordination polymers with the same proton-conducting pathway by tuning metal cation nodes. Inorg. Chem. 2016, 55, 983–986.  doi: 10.1021/acs.inorgchem.5b02686

    23. [23]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    24. [24]

      Palatinus, L.; Chapuis, G. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790.  doi: 10.1107/S0021889807029238

    25. [25]

      Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008. 64, 112–122.  doi: 10.1107/S0108767307043930

    26. [26]

      Sarkisov, L. A. Harrison, computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 2011, 37, 1248–1257.  doi: 10.1080/08927022.2011.592832

    27. [27]

      Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    3. [3]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    9. [9]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    10. [10]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    11. [11]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    19. [19]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(6)
  • Abstract views(424)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return