Citation: Huan XUE, Tao LI, Qi YIN, Ge HUANG, Tian-Fu LIU. A Sulfonate-based Metal-organic Framework for the Transformation of CO2 and Epoxides into Cyclic Carbonates[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 2027-2032. doi: 10.14102/j.cnki.0254–5861.2011–2741 shu

A Sulfonate-based Metal-organic Framework for the Transformation of CO2 and Epoxides into Cyclic Carbonates

  • Corresponding author: Tian-Fu LIU, tfliu@fjirsm.ac.cn
  • §  These authors contributed equally to this work
  • Received Date: 18 January 2020
    Accepted Date: 22 March 2020

    Fund Project: the National Natural Science Foundation of China 21871267

Figures(4)

  • An interesting metal-organic framework (MOF) PFC-31 was synthesized by a simple solvothermal reaction. X-ray crystallography reveals that PFC-31 crystallizes in monoclinic system, space group P21/c with a = 6.8410(17), b = 20.123(5), c = 7.689(2) Å, β = 104.239(7)°, V = 1026.0(5) Å3, Z = 2, C16H22CuN4O8S2, Mr = 526.03, μ = 1.322 mm–1, Dc = 1.703 g/cm3, F(000) = 542, GOOF = 1.214, R = 0.0975 and wR = 0.2324. According to X-ray analysis, PFC-31 shows one-dimensional chain constructed by Cu(II) centers coordinating with two pyridine groups, two sulfonate groups and two DMF molecules. Owing to the orderly functionalized sulfonate group and Lewis metal sites, PFC-31 exhibits good catalytic capability for CO2 cycloaddition of epoxide under normal pressure and temperature.
  • 加载中
    1. [1]

      Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.  doi: 10.1021/cr300014x

    2. [2]

      Lin, Z. J.; Lu, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.  doi: 10.1039/C3CS60483G

    3. [3]

      Huang, G.; Wang, Y.; Liu, T. F. A low-temperature synthesis-induced defect formation strategy for stable hierarchical porous metal-organic frameworks. Chin. Chem. Lett. 2019, 30, 2309–2312.  doi: 10.1016/j.cclet.2019.04.030

    4. [4]

      Huang, G.; Yang, L.; Yin, Q.; Fang, Z. B.; Hu, X. J.; Zhang, A. A.; Jiang, J.; Liu, T. F.; Cao, R. A Comparison of two isoreticular metal-organic frameworks with cationic and neutral skeletons: stability, mechanism, and catalytic activity. Angew Chem. Int. Ed. 2020, 59, 4385–4390.  doi: 10.1002/anie.201916649

    5. [5]

      Rowsell, J. L. C.; Yaghi, O. M. Metal-organic frameworks: a new class of porous materials. Micropor. Mesopor. Mat. 2004, 73, 3–14.  doi: 10.1016/j.micromeso.2004.03.034

    6. [6]

      Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.  doi: 10.1126/science.1192160

    7. [7]

      Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126–157.  doi: 10.1039/C6CS00250A

    8. [8]

      Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.  doi: 10.1039/C4CS00103F

    9. [9]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.  doi: 10.1039/b802426j

    10. [10]

      Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.  doi: 10.1021/cr200190s

    11. [11]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.  doi: 10.1021/cr200324t

    12. [12]

      Zhu, X. D.; Zhang, K.; Wang, Y.; Long, W. W.; Sa, R. J.; Liu, T. F.; Lu, J. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater. Inorg. Chem. 2018, 57, 1060–1065.  doi: 10.1021/acs.inorgchem.7b02471

    13. [13]

      Liang, J.; Chen, R. P.; Wang, X. Y.; Liu, T. T.; Wang, X. S.; Huang, Y. B.; Cao, R. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides. Chem. Sci. 2017, 8, 1570–1575.  doi: 10.1039/C6SC04357G

    14. [14]

      Liang, J.; Xie, Y. Q.; Wang, X. S.; Wang, Q.; Liu, T. T.; Huang, Y. B.; Cao, R. An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate. Chem. Commun. 2018, 54, 342–345.  doi: 10.1039/C7CC08630J

    15. [15]

      Zheng, J.; Wu, M.; Jiang, F.; Su, W.; Hong, M. Stable porphyrin Zr and Hf metal-organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chem. Sci. 2015, 6, 3466–3470.  doi: 10.1039/C5SC00213C

    16. [16]

      Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.  doi: 10.1039/C8CS00829A

    17. [17]

      Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem. Int. Ed. 2016, 55, 7296–7343.  doi: 10.1002/anie.201507458

    18. [18]

      Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Rev. Mater. 2017, 2, 17045.  doi: 10.1038/natrevmats.2017.45

    19. [19]

      Xie, Y.; Wang, T. T.; Liu, X. H.; Zou, K.; Deng, W. Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 2013, 4, 1960.  doi: 10.1038/ncomms2960

    20. [20]

      Macias, E. E.; Ratnasamy, P.; Carreon, M. A. Catalytic activity of metal-organic framework Cu3(BTC)2 in the cycloaddition of CO2 to epichlorohydrin reaction. Catal. Today 2012, 198, 215–218.  doi: 10.1016/j.cattod.2012.03.034

    21. [21]

      Babu, R.; Kathalikkattil, A. C.; Roshan, R.; Tharun, J.; Kim, D. W.; Park, D. W. Dual-porous metal-organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem. 2016, 18, 232–242.  doi: 10.1039/C5GC01763G

    22. [22]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8.

    23. [23]

      Zhang, G.; Wei, G.; Liu, Z.; Oliver, S. R. J.; Fei, H. A robust sulfonate-based metal-organic framework with permanent porosity for efficient CO2 capture and conversion. Chem. Mater. 2016, 28, 6276–6281.

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    3. [3]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    6. [6]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    10. [10]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    11. [11]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    12. [12]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    19. [19]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(10)
  • Abstract views(742)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return