Citation: Xi-Lai XUE, Xiang-Xin ZHANG, Jun-Hong LIN, Su-Jing CHEN, Yuan-Qiang CHEN, Yong-Chuan LIU, Yi-Ning ZHANG. Effects of Bulky LATP in PEO-based Hybrid Solid Electrolytes[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1941-1948. doi: 10.14102/j.cnki.0254–5861.2011–2738 shu

Effects of Bulky LATP in PEO-based Hybrid Solid Electrolytes

  • Corresponding author: Yi-Ning ZHANG, ynzhang@fjirsm.ac.cn
  • Received Date: 15 January 2020
    Accepted Date: 6 March 2020

    Fund Project: the Fujian Provincial Science and Technology Program 2018H0042the Fujian Provincial Science and Technology Program No. 2018H0042, 2019T3017Putian Municipal Science and Technology Program 2019HJSTS009the DNL Cooperation Fund, CAS DNL180308

Figures(5)

  • Solid polymer electrolytes (SPEs) have been considered as the spotlight in recent years due to their high safety, non-flammability and good flexibility. Nonetheless, high crystallinity of polymer matrix leads to low ionic conductivity at ambient conditions and retards the practical applications of SPEs. Herein, we report hybrid solid electrolytes (HSE) containing bulky LATP in poly(ethylene oxide) (PEO) matrix, which significantly enhances the electrochemical properties. LATP has been easily obtained by an accessible solid-state method. The solid electrolyte based on 20 wt% LATP in PEO polymer matrix (abbreviated as PEO-20) exhibits an ionic conductivity of 2.1 ×10–5 S·cm–1 at 30 ℃, an order of magnitude higher than 2.9 × 10–6 S·cm–1 of the pristine PEO solid electrolyte (abbreviated as PEO–0), mainly resulting from the decline of crystallinity in polymer matrix. The electrochemical window of PEO-20 can reach 4.84 V at room temperature, compared with 4.40 V for PEO-0, which could be compatible with high-voltage cathode materials.
  • 加载中
    1. [1]

      Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.  doi: 10.1039/c1ee01388b

    2. [2]

      Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.  doi: 10.1038/451652a

    3. [3]

      Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.  doi: 10.1002/adma.201800561

    4. [4]

      Tarascon, J. M. Key challenges in future Li-battery research. Philos. T. R. Soc. A 2010, 368, 3227–3241.  doi: 10.1098/rsta.2010.0112

    5. [5]

      Cao, W. Z.; Zhang, J. N.; Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020, 26, 46–55.  doi: 10.1016/j.ensm.2019.12.024

    6. [6]

      Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.  doi: 10.1038/natrevmats.2016.13

    7. [7]

      Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Adv. Mater. 2018, 30, 1705702.  doi: 10.1002/adma.201705702

    8. [8]

      Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem. 2015, 8, 2154–2175.  doi: 10.1002/cssc.201500284

    9. [9]

      Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.  doi: 10.1038/natrevmats.2016.103

    10. [10]

      Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape‐casting Li0. 34La0. 56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.  doi: 10.1002/adma.201906221

    11. [11]

      Zheng, H. P.; Wu, S. P.; Tian, R.; Xu, Z. M.; Zhu, H.; Duan, H. N.; Liu, H. Z. Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 2020, 30, 1906189.  doi: 10.1002/adfm.201906189

    12. [12]

      Pogosova, M.; Krasnikova, I.; Sergeev, A.; Zhugayevych, A.; Stevenson, K. Correlating structure and transport properties in pristine and environmentally-aged superionic conductors based on Li1.3Al0.3Ti1.7(PO4)3 ceramics. J. Power Sources 2020, 448, 227367.  doi: 10.1016/j.jpowsour.2019.227367

    13. [13]

      Piana, G.; Bella, F.; Geobaldo, F.; Meligrana, G.; Gerbaldi, C. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, "one pot" preparation. J. Energy Storage 2019, 26, 100947.  doi: 10.1016/j.est.2019.100947

    14. [14]

      Cong, L. N.; Li, Y. N.; Lu, W.; Jie, J.; Liu, Y. L.; Sun, L. Q.; Xie, H. M. Unlocking the poly (vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. J. Power Sources 2020, 446, 227365.  doi: 10.1016/j.jpowsour.2019.227365

    15. [15]

      Sengwa, R. J.; Dhatarwal, P. Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim. Acta 2020, 338, 135890.  doi: 10.1016/j.electacta.2020.135890

    16. [16]

      Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.  doi: 10.1016/j.nanoen.2018.01.028

    17. [17]

      Hong, H.; Chen, L. Q.; Huang, X. J.; Xue, R. J. Studies on PAN-based lithium salt complex. Electrochim. Acta 1992, 37, 1671–1673.  doi: 10.1016/0013-4686(92)80135-9

    18. [18]

      Shi, J.; Yang, Y. F.; Shao, H. X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membrane. Sci. 2018, 547, 1–10.  doi: 10.1016/j.memsci.2017.10.033

    19. [19]

      Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K. Building better batteries in the solid state: a review. Materials (Basel, Switzerland) 2019, 12, 3892.  doi: 10.3390/ma12233892

    20. [20]

      Ratner, M. A.; Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 1988, 88, 109–124.  doi: 10.1021/cr00083a006

    21. [21]

      Keller, M.; Varzi, A.; Passerini, S. Hybrid electrolytes for lithium metal batteries. J. Power Sources 2018, 392, 206–225.  doi: 10.1016/j.jpowsour.2018.04.099

    22. [22]

      Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.  doi: 10.1002/adma.201705702

    23. [23]

      Krawiec, W.; Scanlon Jr, L.; Fellner, J.; Vaia, R.; Vasudevan, S.; Giannelis, E. Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J. Power Sources 1995, 54, 310–315.  doi: 10.1016/0378-7753(94)02090-P

    24. [24]

      Vignarooban, K; Dissanayake, M. L.; Albinsson, L; Mellander, B. E. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25–28.  doi: 10.1016/j.ssi.2014.08.002

    25. [25]

      Liu, L. H.; Chu, L. H.; Jiang, B.; Li, M. C. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics 2019, 331, 89–95.  doi: 10.1016/j.ssi.2019.01.007

    26. [26]

      Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.  doi: 10.1021/acs.nanolett.7b00715

    27. [27]

      Shimonishi, Y.; Zhang, T.; Imanishi, N.; Im, D. M.; Lee, D.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N. A study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J. Power Sources 2011, 196, 5128–5132.  doi: 10.1016/j.jpowsour.2011.02.023

    28. [28]

      Shen, Z. Y.; Zhang, W. D.; Zhu, G. N.; Huang, Y. Q.; Feng, Q.; Lu, Y. Y. Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries. Small Methods 2020, 4, 1900592.  doi: 10.1002/smtd.201900592

    29. [29]

      Weston, J.; Steele, B. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7, 75–79.  doi: 10.1016/0167-2738(82)90072-8

    30. [30]

      Li, D.; Chen, L.; Wang, T. S.; Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Inter. 2018, 10, 7069–7078.  doi: 10.1021/acsami.7b18123

    31. [31]

      Chen, L.; Liu, Y. C.; Fan, L. Z. Enhanced interface stability of polymer electrolytes using organic cage-type cucurbit [6] uril for lithium metal batteries. J. Electrochem. Soc. 2017, 164, A1834–A1840.  doi: 10.1149/2.0661709jes

    32. [32]

      Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143.  doi: 10.1016/j.progpolymsci.2017.12.004

    33. [33]

      Yan, C.; Xu, R.; Qin, J. L.; Yuan, H.; Xiao, Y.; Xu, L.; Huang, J. Q. 4.5 V High-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode. Angew. Chem. Int. Edit. 2019, 58, 15235–15238.  doi: 10.1002/anie.201908874

    34. [34]

      Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J.; Yang, W. L.; Chu, Y.; Liu, Y. L.; Yu, H. G.; Yang, X. Q.; Huang, X. J.; Chen, L. Q.; Li, H. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.  doi: 10.1038/s41560-019-0409-z

    35. [35]

      Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 2016, 55, 500–513.  doi: 10.1002/anie.201504971

    36. [36]

      Zheng, F.; Kotobuki, M.; Song, S. F.; Lai, M. O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 19–213.

  • 加载中
    1. [1]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    2. [2]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    3. [3]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    4. [4]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    5. [5]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    8. [8]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    9. [9]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    10. [10]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    11. [11]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    12. [12]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    13. [13]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    14. [14]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    15. [15]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    16. [16]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    17. [17]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    18. [18]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    19. [19]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    20. [20]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

Metrics
  • PDF Downloads(2)
  • Abstract views(303)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return