Citation: Guo-Wei LI, Yong-Sheng LIU, Fei-Long JIANG, Mao-Chun HONG. Ultrasmall Lanthanide-doped NaMgF3 Nanocrystals: Controlled Synthesis and Optical Properties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 2001-2008. doi: 10.14102/j.cnki.0254–5861.2011–2734 shu

Ultrasmall Lanthanide-doped NaMgF3 Nanocrystals: Controlled Synthesis and Optical Properties

  • Corresponding author: Yong-Sheng LIU, liuysh@fjirsm.ac.cn Fei-Long JIANG, fjiang@fjirsm.ac.cn
  • Received Date: 13 January 2020
    Accepted Date: 3 March 2020

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21871256the National Natural Science Foundation of China 21731006the Key Research Program of Frontier Science CAS QYZDY-SSW-SLH025

Figures(5)

  • Orthorhombic-phase NaMgF3, composed of bio-friendly elements of Na, Mg and F, is considered to be an ideal host matrix for preparing trivalent lanthanide (Ln3+)-doped luminescent nanocrystals (NCs) with color-tunable emissions for diverse biological applications. However, the preparation and the survey on optical properties of ultrasmall (< 10 nm) Ln3+-doped NaMgF3 NCs remain nearly untouched to date. In this paper, we report a series of monodisperse Ln3+-doped orthorhombic-phase NaMgF3 NCs with an average size of ~10 nm that was synthesised by using a modified high-temperature co-precipitation method. Utilizing Eu3+ ion as an efficient optical/structural probe, the successful hetero-valence doping of Ln3+ ion into the lattice of NaMgF3 NCs is well-established irrespective of their different valences and radii between the host cation (e.g. Mg2+) and Ln3+ dopant. Benefiting from this, desirable upconversion luminescence (UCL) ranging from ultraviolet (UV) to visible and to near-infrared (NIR) spectral regions can be easily obtained after the doping of typical UCL couples of Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Ho3+ into the NaMgF3 NCs upon excitation by using a 980-nm diode laser.
  • 加载中
    1. [1]

      Ding, Q.; Zhao, S.; Li, L.; Shen, Y.; Shan, P.; Wu, Z.; Li, X.; Li, Y.; Liu, S.; Luo, J. Abrupt structural transformation in asymmetric ABPO4F (A = K, Rb, Cs). Inorg. Chem. 2019, 58, 1733−1737.  doi: 10.1021/acs.inorgchem.8b02754

    2. [2]

      Fu, H.; Peng, P.; Li, R.; Liu, C.; Liu, Y.; Jiang, F.; Hong, M.; Chen, X. A general strategy for tailoring upconversion luminescence in lanthanide-doped inorganic nanocrystals through local structure engineering. Nanoscale 2018, 10, 9353−9359.  doi: 10.1039/C8NR01519H

    3. [3]

      Li, Y.; Liang, F.; Zhao, S.; Li, L.; Wu, Z.; Ding, Q.; Liu, S.; Lin, Z.; Hong, M.; Luo, J. Two non-π-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 2019, 141, 3833−3837.  doi: 10.1021/jacs.9b00138

    4. [4]

      Hehlen, M. P.; Brik, M. G.; Krämer, K. W. 50th anniversary of the Judd-Ofelt theory: an experimentalist's view of the formalism and its application. J. Lumin. 2013, 136, 221−239.  doi: 10.1016/j.jlumin.2012.10.035

    5. [5]

      Bettinelli, M.; Carlos, L. D.; Liu, X. G. Lanthanide-doped upconversion nanoparticles. Phys. Today 2015, 68, 38−43.

    6. [6]

      Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488−4527.  doi: 10.1021/acs.chemrev.6b00691

    7. [7]

      Wang, R.; Guo, Q.; Qian, Y.; Xing, L.; Xu, Y. Upconversion properties of LiNbO3 single crystals co-doped with Ho and Yb. Chin. J. Struct. Chem. 2011, 30, 1597−1603.

    8. [8]

      Back, M.; Ueda, J.; Ambrosi, E.; Cassandro, L.; Cristofori, D.; Ottini, R.; Riello, P.; Sponchia, G.; Asami, K.; Tanabe, S.; Trave, E. Lanthanide-doped bismuth-based fluoride nanocrystalline particles: formation, spectroscopic investigation, and chemical stability. Chem. Mater. 2019, 31, 8504−8514.  doi: 10.1021/acs.chemmater.9b03164

    9. [9]

      Bian, W.; Lin, Y.; Wang, T.; Yu, X.; Qiu, J.; Zhou, M.; Luo, H.; Yu, S. F.; Xu, X. Direct identification of surface defects and their influence on the optical characteristics of upconversion nanoparticles. ACS Nano 2018, 12, 3623−3628.  doi: 10.1021/acsnano.8b00741

    10. [10]

      Chen, B.; Kong, W.; Liu, Y.; Lu, Y.; Li, M.; Qiao, X.; Fan, X.; Wang, F. Crystalline hollow microrods for site-selective enhancement of nonlinear photoluminescence. Angew. Chem. Int. Ed. 2017, 56, 10383−10387.  doi: 10.1002/anie.201703600

    11. [11]

      Chen, B.; Kong, W.; Wang, N.; Zhu, G.; Wang, F. Oleylamine-mediated synthesis of small NaYbF4 nanoparticles with tunable size. Chem. Mater. 2019, 4779−4786.

    12. [12]

      Ding, S.; Yang, X. F.; Song, E. H.; Liang, C. L.; Zhou, B.; Wu, M. M.; Zhou, W. Z.; Zhang, Q. Y. An efficient synthetic strategy for uniform perovskite core-shell nanocubes NaMgF3: Mn2+, Yb3+@NaMgF3: Yb3+ with enhanced near infrared upconversion luminescence. J. Mater. Chem. C 2018, 6, 2342−2350.  doi: 10.1039/C7TC05416E

    13. [13]

      Fischer, S.; Swabeck, J. K.; Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in beta-NaLnF4 nanocrystals induced by precursor injection rate. J. Am. Chem. Soc. 2017, 139, 12325−12332.  doi: 10.1021/jacs.7b07496

    14. [14]

      Huang, P.; Zheng, W.; Gong, Z.; You, W.; Wei, J.; Chen, X. Rare earth ion- and transition metal ion-doped inorganic luminescent nanocrystals: from fundamentals to biodetection. Mater. Today Nano 2019, 5, 100031−23.  doi: 10.1016/j.mtnano.2019.100031

    15. [15]

      Liu, M.; Shi, Z.; Wang, X.; Zhang, Y.; Mo, X.; Jiang, R.; Liu, Z.; Fan, L.; Ma, C. G.; Shi, F. Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF4: Yb, Er nanoparticles via Lu3+ doping. Nanoscale 2018, 10, 20279−20288.  doi: 10.1039/C8NR06968A

    16. [16]

      Pang, M.; Zhai, X.; Feng, J.; Song, S.; Deng, R.; Wang, Z.; Yao, S.; Ge, X.; Zhang, H. One-step synthesis of water-soluble hexagonal NaScF4: Yb/Er nanocrystals with intense red emission. Dalton Trans. 2014, 43, 10202−10207.  doi: 10.1039/c4dt00708e

    17. [17]

      Zheng, W.; Zhou, S.; Chen, Z.; Hu, P.; Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Huang, M.; Chen, X. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew. Chem. Int. Ed. 2013, 52, 6671−6676.  doi: 10.1002/anie.201302481

    18. [18]

      Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Upconversion effective enhancement by producing various coordination surroundings of rare-earth ions. Inorg. Chem. 2015, 54, 2643−2651.  doi: 10.1021/ic5027976

    19. [19]

      Gu, Y.; Guo, Z.; Yuan, W.; Kong, M.; Liu, Y.; Liu, Y.; Gao, Y.; Feng, W.; Wang, F.; Zhou, J.; Jin, D.; Li, F. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photon. 2019, 13, 525−531.  doi: 10.1038/s41566-019-0437-z

    20. [20]

      Li, L.; Yu, Y.; Zhou, Z.; Li, Q. PEG assisted hydrothermal synthesis of β-NaYF4: Yb3+, Er3+ microrods for upconversion photoluminescence display. Chin. J. Struct. Chem. 2014, 33, 1865−1874.

    21. [21]

      Liu, Q.; Feng, W.; Yang, T.; Yi, T.; Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 2013, 8, 2033−2044.  doi: 10.1038/nprot.2013.114

    22. [22]

      Song, X.; Li, S.; Guo, H.; You, W.; Shang, X.; Li, R.; Tu, D.; Zheng, W.; Chen, Z.; Yang, H.; Chen, X. Graphene-oxide-modified lanthanide nanoprobes for tumor-targeted visible/NIR-II luminescence imaging. Angew. Chem. Int. Ed. 2019, 58, 18981−18986.  doi: 10.1002/anie.201909416

    23. [23]

      Wang, J.; Lin, H.; Cheng, Y.; Cui, X.; Gao, Y.; Ji, Z.; Xu, J.; Wang, Y. A novel high-sensitive upconversion thermometry strategy: utilizing synergistic effect of dual-wavelength lasers excitation to manipulate electron thermal distribution. Sens. Actuators B-Chem. 2019, 278, 165−171.  doi: 10.1016/j.snb.2018.09.086

    24. [24]

      Xu, M.; Zou, X.; Su, Q.; Yuan, W.; Cao, C.; Wang, Q.; Zhu, X.; Feng, W.; Li, F. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 2018, 9, 2698−7.  doi: 10.1038/s41467-018-05160-1

    25. [25]

      Yu, L.; Liu, Y.; Chen, X. Lanthanide-doped upconversion nano-bioprobes for in-vitro detection of tumor marker. Chin. J. Lumin. 2018, 39, 27−49.  doi: 10.3788/fgxb20183901.0027

    26. [26]

      Zhang, M.; Zhai, X.; Lei, P.; Yao, S.; Xu, X.; Dong, L.; Du, K.; Li, C.; Feng, J.; Zhang, H. Selective enhancement of green upconversion luminescence from NaYF4: Yb, Er microparticles through Ga3+ doping for sensitive temperature sensing. J. Lumin. 2019, 215, 116632−116639.  doi: 10.1016/j.jlumin.2019.116632

    27. [27]

      Zhou, L.; Fan, Y.; Wang, R.; Li, X.; Fan, L.; Zhang, F. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection. Angew. Chem. Int. Ed. 2018, 57, 12824−12829.  doi: 10.1002/anie.201808209

    28. [28]

      Zhuo, Z.; Liu, Y.; Liu, D.; Huang, P.; Jiang, F.; Chen, X.; Hong, M. Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence. Chem. Sci. 2017, 8, 5050−5056.  doi: 10.1039/C7SC01393K

    29. [29]

      Wang, Y.; Wei, T.; Cheng, X.; Ma, H.; Pan, Y.; Xie, J.; Su, H.; Xie, X.; Huang, L.; Huang, W. Insights into Li+-induced morphology evolution and upconversion luminescence enhancement of KSc2F7: Yb/Er nanocrystals. J. Mater. Chem. C 2017, 5, 3503−3508.  doi: 10.1039/C7TC00649G

    30. [30]

      Wu, Y.; Sun, Y.; Zhu, X.; Liu, Q.; Cao, T.; Peng, J.; Yang, Y.; Feng, W.; Li, F. Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging. Biomaterials 2014, 35, 4699−4705.  doi: 10.1016/j.biomaterials.2014.02.034

    31. [31]

      Dong, H.; Sun, L. D.; Li, L. D.; Si, R.; Liu, R.; Yan, C. H. Selective cation exchange enabled growth of lanthanide core/shell nanoparticles with dissimilar structure. J. Am. Chem. Soc. 2017, 139, 18492−18495.  doi: 10.1021/jacs.7b11836

    32. [32]

      Liu, H.; Xu, H.; Huang, Q.; Cao, W.; Yu, H.; Yu, Y. Upconversion luminescence properties of NaY0.92Yb0.05Er0.03F4 enhanced by Zr4+ codoping. Chin. J. Struct. Chem. 2017, 36, 1743−1751.

    33. [33]

      Xu, J.; Tu, D.; Zheng, W.; Shang, X.; Huang, P.; Cheng, Y.; Wang, Y.; Chen, X. Interfacial defects dictated in situ fabrication of yolk-shell upconversion nanoparticles by electron-beam irradiation. Adv. Sci. 2018, 5, 1800766−9.  doi: 10.1002/advs.201800766

    34. [34]

      Wang, M.; Tian, Y.; Zhao, F.; Li, R.; You, W.; Fang, Z.; Chen, X.; Huang, W.; Ju, Q. Alleviating the emitter concentration effect on upconversion nanoparticles via an inert shell. J. Mater. Chem. C 2017, 5, 1537−1543.  doi: 10.1039/C6TC05289D

    35. [35]

      Xiang, J.; Ge, F.; Yu, B.; Yan, Q.; Shi, F.; Zhao, Y. Nanocomplexes of photolabile polyelectrolyte and upconversion nanoparticles for near-infrared light-triggered payload release. ACS Appl. Mater. Interfaces 2018, 10, 20790−20800.  doi: 10.1021/acsami.8b05063

    36. [36]

      Ju, D.; Song, F.; Khan, A.; Song, F.; Zhou, A.; Gao, X.; Hu, H.; Sang, X.; Zadkov, V. Simultaneous dual-mode emission and tunable multicolor in the time domain from lanthanide-doped core-shell microcrystals. Nanomaterials 2018, 8, 1023−11.  doi: 10.3390/nano8121023

    37. [37]

      Liu, X.; Wang, Y.; Li, X.; Yi, Z.; Deng, R.; Liang, L.; Xie, X.; Loong, D. T. B.; Song, S.; Fan, D.; All, A. H.; Zhang, H.; Huang, L.; Liu, X. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899−7.  doi: 10.1038/s41467-017-00916-7

    38. [38]

      Lei, P.; An, R.; Yao, S.; Wang, Q.; Dong, L.; Xu, X.; Du, K.; Feng, J.; Zhang, H. Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature. Adv. Mater. 2017, 29, 1700505−4.  doi: 10.1002/adma.201700505

    39. [39]

      Sun, Y.; Feng, W.; Yang, P.; Huang, C.; Li, F. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1509−1525.  doi: 10.1039/C4CS00175C

    40. [40]

      Du, Y. P.; Zhang, Y. W.; Yan, Z. G.; Sun, L. D.; Gao, S.; Yan, C. H. Single-crystalline and near-monodispersed NaMF3 (M = Mn, Co, Ni, Mg) and LiMAlF6 (M = Ca, Sr) nanocrystals from cothermolysis of multiple trifluoroacetates in solution. Chem. Asian J. 2007, 2, 965−974.  doi: 10.1002/asia.200700054

    41. [41]

      Wang, J.; Zhang, J.; Xie, J.; Li, Y.; Wang, L.; Zhang, Q. Phase controllable synthesis of NaMgF3: Yb3+, Er3+ nanocrystals with effective red upconversion luminescence. J. Mater. Sci. : Mater. Electron. 2018, 29, 18320−18330.  doi: 10.1007/s10854-018-9946-7

    42. [42]

      Liu, L.; Wang, S.; Zhao, B.; Pei, P.; Fan, Y.; Li, X.; Zhang, F. Er3+ sensitized 1530 to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem. Int. Ed. 2018, 57, 7518−7522.  doi: 10.1002/anie.201802889

    43. [43]

      Wang, J.; Wang, F.; Wang, C.; Liu, Z.; Liu, X. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 10369−10372.  doi: 10.1002/anie.201104192

    44. [44]

      Zhong, Y.; Ma, Z.; Wang, F.; Wang, X.; Yang, Y.; Liu, Y.; Zhao, X.; Li, J.; Du, H.; Zhang, M.; Cui, Q.; Zhu, S.; Sun, Q.; Wan, H.; Tian, Y.; Liu, Q.; Wang, W.; Garcia, K. C.; Dai, H. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322−1331.  doi: 10.1038/s41587-019-0262-4

    45. [45]

      Pischedda, V.; Ferraris, G.; Raade, G. Single-crystal X-ray diffraction study on neighborite (NaMgF3) from Gjerdingselva, Norway. N. Jb. Miner. Abh. 2005, 182, 23−29.  doi: 10.1127/0077-7757/2005/0028

    46. [46]

      Fu, H.; Liu, Y.; Jiang, F.; Hong, M. Controlled synthesis and optical properties of lanthanide-doped Na3ZrF7 nanocrystals. Chin. J. Struct. Chem. 2018, 37, 1737−1748.

    47. [47]

      Yu, L.; Li, G.; Liu, Y.; Jiang, F.; Hong, M. Lanthanide-doped KGd2F7 nanocrystals: controlled synthesis, optical properties, and spectroscopic identification of the optimum core/shell architecture for highly enhanced upconverting luminescence. Cryst. Growth Des. 2019, 19, 2340−2349.  doi: 10.1021/acs.cgd.9b00040

    48. [48]

      Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924−6958.  doi: 10.1039/c3cs60060b

  • 加载中
    1. [1]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    2. [2]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    3. [3]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    4. [4]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    5. [5]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    6. [6]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    7. [7]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    10. [10]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    11. [11]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    12. [12]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    13. [13]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    14. [14]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    15. [15]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    16. [16]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    17. [17]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    18. [18]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    19. [19]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(6)
  • Abstract views(336)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return