Citation: Chang-Le FU, Yi WANG, Jun-Heng HUANG. Hybrid of Quaternary Layered Double Hydroxides and Carbon Nanotubes for Oxygen Evolution Reaction[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1807-1816. doi: 10.14102/j.cnki.0254–5861.2011–2729 shu

Hybrid of Quaternary Layered Double Hydroxides and Carbon Nanotubes for Oxygen Evolution Reaction

  • Corresponding author: Yi WANG, ywang@fjnu.edu.cn Jun-Heng HUANG, huangjunheng@fjirsm.ac.cn
  • Received Date: 7 January 2020
    Accepted Date: 30 March 2020

    Fund Project: National Postdoctoral Program for Innovative Talents of China BX201600164the National Natural Science Foundation of China 21701175

Figures(6)

  • Highly active electrocatalysts based on Layered Double Hydroxides (LDH) towards oxygen evolution reactions (OER) are required for the applications of renewable energy-conversion technology. The improvement of conductivity and electron-transporting capability for LDH materials remains an enormous challenge yet. Here, we synthesized carbon nanotube supported quaternary FeCoNiW-LDH ultrathin nanosheets with 1 nm thickness via one-pot hydrothermal methods, which exhibit enhanced OER activity due to the synergistic effect of modified CNTs and doped W6+ onto LDH nanosheets catalysts. The loaded carbon nanotubes can directly result in the improved conductivity. In addition, W6+ doping in LDH can modify the electronic structure and further enhance the conductivity of electrocatalysts. FeCoNiW-LDH/CNT exhibits a small overpotential (258 mV) at a current density of 10 mA·cm–2 and low Tafel slope (41 mV decade–1) towards OER in alkaline solutions, outperforming the noble metal RuO2 catalysts.
  • 加载中
    1. [1]

      Lota, G.; Fic, K.; Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications. Energ. Environ. Sci. 2011, 4, 1592–1605.  doi: 10.1039/c0ee00470g

    2. [2]

      Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 2013, 5, 403–409.  doi: 10.1038/nchem.1621

    3. [3]

      Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.  doi: 10.1038/nchem.1069

    4. [4]

      Whitesides, G. M.; Crabtree, G. W. Don΄t forget long-term fundamental research in energy. Science 2007, 315, 796–798.  doi: 10.1126/science.1140362

    5. [5]

      Seger, B.; Kamat, P. V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 2009, 113, 7990–7995.  doi: 10.1021/jp900360k

    6. [6]

      Kucuk, A. Ion conducting behavior of silsesquioxane-based materials used in fuel cell and rechargeable battery applications. J. Struct. Chem. 2018, 59, 1744–1752.  doi: 10.1134/S0022476618070314

    7. [7]

      Hawkes, F. R.; Dinsdale, R.; Hawkes, D. L.; Hussy, I. Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energ. 2002, 27, 1339–1347.  doi: 10.1016/S0360-3199(02)00090-3

    8. [8]

      Turner, J. A. Sustainable hydrogen production. Science 1996, 305, 972–974.  doi: 10.3321/j.issn:1003-8728.1996.06.027

    9. [9]

      Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energ. Convers. Manage. 2018, 165, 602–627.  doi: 10.1016/j.enconman.2018.03.088

    10. [10]

      Luo, M.; Yi, Y.; Wang, S.; Wang, Z.; Du, M.; Pan, J.; Wang, Q. Review of hydrogen production using chemical-looping technology. Renew. Susta. Energ. Rev. 2017, 81, 3186–3214.

    11. [11]

      Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energ. Environ. Sci. 2019, 12, 2620–2645  doi: 10.1039/C9EE01202H

    12. [12]

      Kai, Z.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 2010, 36, 307–326.  doi: 10.1016/j.pecs.2009.11.002

    13. [13]

      Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394.  doi: 10.1016/S1872-2067(17)62949-8

    14. [14]

      Mohammed-Ibrahim, J.; Sun, X. Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting – a review. J. Energy. Chem. 2019, 34, 111–160.  doi: 10.1016/j.jechem.2018.09.016

    15. [15]

      Blasco-Ahicart, M.; Soriano-López, J.; Carbó, J. J.; Poblet, J. M.; Galan-Mascaros, J. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 2018, 10, 24–30.  doi: 10.1038/nchem.2874

    16. [16]

      Stern, L. A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energ. Environ. Sci. 2015, 8, 2347–2351.  doi: 10.1039/C5EE01155H

    17. [17]

      Zhu, W.; Yue, X.; Zhang, W.; Yu, S.; Zhang, Y.; Wang, J.; Wang, J. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.  doi: 10.1039/C5CC08064A

    18. [18]

      Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 2015, 7, 15122–15126.  doi: 10.1039/C5NR04064G

    19. [19]

      Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.  doi: 10.1038/ncomms15341

    20. [20]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.  doi: 10.1039/C6CS00328A

    21. [21]

      Yu, X. Y.; Feng, Y.; Guan, B.; Lou, X. W. D.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energ. Environ. Sci. 2016, 9, 246–1250.

    22. [22]

      Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.  doi: 10.1021/acs.chemmater.5b03148

    23. [23]

      Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W. D.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.  doi: 10.1038/nenergy.2015.6

    24. [24]

      Dong, C.; Liu, Z. W.; Liu, J. Y.; Wang, W. C.; Cui, L.; Luo, R. C.; Guo, H. L.; Zheng, X. L.; Qiao, S. Z.; Du, X. W. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction. Small. 2017, 13, 1603903.  doi: 10.1002/smll.201603903

    25. [25]

      Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—reduced energy consumption by improved electrocatalysis. Energy 2007, 32, 431–436.  doi: 10.1016/j.energy.2006.07.014

    26. [26]

      Jeong, Y. S.; Park, J. B.; Jung, H. G.; Kim, J.; Luo, X.; Lu, J.; Curtiss, L.; Amine, K.; Sun, Y. K.; Scrosati, B. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries. Nano. Lett. 2015, 15, 4261–4268.  doi: 10.1021/nl504425h

    27. [27]

      Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.  doi: 10.1021/jz2016507

    28. [28]

      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.  doi: 10.1126/science.1212858

    29. [29]

      Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.  doi: 10.1021/cr200434v

    30. [30]

      Liang, J.; Ma, R.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co−Ni layered double hydroxides: a route to positively charged Co−Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2009, 22, 371–378.

    31. [31]

      Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.  doi: 10.1021/ja106421g

    32. [32]

      Leont'eva, N.; Cherepanova, S.; Drozdov, V. Thermal decomposition of layered double hydroxides Mg–Al, Ni–Al, Mg–Ga: structural features of hydroxide, dehydrated, and oxide phases. J. Struct. Chem. 2014, 55, 1326–1341.  doi: 10.1134/S0022476614070142

    33. [33]

      Isupov, V. Intercalation compounds of aluminum hydroxide. J. Struct. Chem. 1999, 40, 672–685.  doi: 10.1007/BF02903444

    34. [34]

      Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.  doi: 10.1038/ncomms5477

    35. [35]

      Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.  doi: 10.1039/C4CC01625D

    36. [36]

      Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.  doi: 10.1002/adma.201701546

    37. [37]

      Ping, J.; Wang, Y.; Lu, Q.; Chen, B.; Chen, J.; Huang, Y.; Ma, Q.; Tan, C.; Yang, J.; Cao, X. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 2016, 28, 7640–7645.  doi: 10.1002/adma.201601019

    38. [38]

      Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.  doi: 10.1021/ja4027715

    39. [39]

      Yin, S.; Tu, W.; Sheng, Y.; Du, Y.; Kraft, M.; Borgna, A.; Xu, R. A highly efficient oxygen evolution catalyst onsisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains. Adv. Mater. 2018, 30, 1705106.  doi: 10.1002/adma.201705106

    40. [40]

      Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.  doi: 10.1002/adma.201501901

    41. [41]

      Huang, J.; Chen, J.; Yao, T.; He, J.; Jiang, S.; Sun, Z.; Liu, Q.; Cheng, W.; Hu, F.; Jiang, Y.; Pan, Z.; Wei, S. CoOOH Nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Edit. 2015, 127, 8846–8851.  doi: 10.1002/ange.201502836

    42. [42]

      Huang, J.; Shang, Q.; Huang, Y.; Tang, F.; Zhang, Q.; Liu, Q.; Jiang, S.; Hu, F.; Liu, W.; Luo, Y.; Yao, T.; Jiang, Y.; Pan, Z.; Sun, Z.; Wei, S. Oxyhydroxide nanosheets with highly efficient electron-hole pair separation for hydrogen evolution. Angew. Chem. Int. Edit. 2016, 55, 2137–2141.  doi: 10.1002/anie.201510642

    43. [43]

      Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. A.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.  doi: 10.1021/cm500641a

    44. [44]

      Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.  doi: 10.1021/acs.chemrev.7b00689

    45. [45]

      Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energ. Environ. Sci. 2014, 7, 2376–2382.  doi: 10.1039/C4EE00436A

    46. [46]

      Haber, J. A.; Xiang, C.; Guevarra, D.; Jung, S.; Jin, J.; Gregoire, J. M. High-throughput mapping of the electrochemical properties of (Ni–Fe–Co–Ce) O–x oxygen-evolution catalysts. Chem. Electro. Chem. 2014, 1, 524–528.

    47. [47]

      Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electro. Chem. Soc. 1987, 134, 377–384.  doi: 10.1149/1.2100463

    48. [48]

      Miller, E. L.; Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electro. Chem. Soc. 1997, 144, 3072–3077.  doi: 10.1149/1.1837961

    49. [49]

      Legrand, L.; Abdelmoula, M.; Géhin, A.; Chaussé, A.; Génin, J. M. Electrochemical formation of a new Fe(Ⅱ)–Fe(Ⅲ) hydroxy-carbonate green rust: characterisation and morphology. Electrochimi. Acta 2001, 46, 1815–1822.  doi: 10.1016/S0013-4686(00)00728-3

    50. [50]

      Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.  doi: 10.1002/aenm.201500245

    51. [51]

      Jiang, J.; Zhang, A.; Li, L.; Ai, L. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power. Sources 2015, 278, 445–451.  doi: 10.1016/j.jpowsour.2014.12.085

    52. [52]

      Zhang, K.; Wang, W.; Kuai, L.; Geng, B. A facile and efficient strategy to gram-scale preparation of composition-controllable Ni–Fe LDHs nanosheets for superior OER catalysis. Electrochim. Acta 2017, 225, 303–309.  doi: 10.1016/j.electacta.2016.12.131

    53. [53]

      Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T. V. S. V.; Salunke, A. S.; Ma, L.; Liang, H.; Kundu, S. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano. Energy 2017, 39, 30–43.  doi: 10.1016/j.nanoen.2017.06.027

    54. [54]

      Yan, H.; Tian, C.; Wang, L.; Wu, A.; Meng, M.; Zhao, L.; Fu, H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Edit. 2015, 54, 6325–6329.  doi: 10.1002/anie.201501419

    55. [55]

      Zhan, T.; Liu, X.; Lu, S.; Hou, W. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Apply. Catal. B: Environ. 2017, 205, 551–558.  doi: 10.1016/j.apcatb.2017.01.010

    56. [56]

      Saleem, M.; Al-Kuhaili, M.; Durrani, S.; Hendi, A.; Bakhtiari, I.; Ali, S. Influence of hydrogen annealing on the optoelectronic properties of WO3 thin films. Int. J. Hydrogen Energ. 2015, 40, 12343–12351.  doi: 10.1016/j.ijhydene.2015.06.078

    57. [57]

      Li, H.; Chen, S.; Zhang, Y.; Zhang, Q.; Jia, X.; Zhang, Q.; Gu, L.; Sun, X.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.  doi: 10.1038/s41467-018-04888-0

    58. [58]

      Liu, Y.; Bai, Y.; Han, Y.; Yu, Z.; Zhang, S.; Wang, G.; Wei, J.; Wu, Q.; Sun, K. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Appl. Mater. Inter. 2017, 9, 36917–36926.  doi: 10.1021/acsami.7b12474

    59. [59]

      Oliva, P.; Leonardi, J.; Laurent, J.; Delmas, C.; Braconnier, J.; Figlarz, M.; Fievet, F.; Guibert, A. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power. Sources 1982, 8, 229–255.  doi: 10.1016/0378-7753(82)80057-8

    60. [60]

      Corrigan, D. A.; Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. J. Electrochem. Soc. 1989, 136, 613–619.  doi: 10.1149/1.2096697

    61. [61]

      Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Edit. 2014, 53, 7584–7588.  doi: 10.1002/anie.201402822

    62. [62]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.  doi: 10.1021/cr1002326

    63. [63]

      McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.  doi: 10.1021/ja407115p

    64. [64]

      Wang, F.; Chen, G.; Liu, X.; Chen, F.; Wan, H.; Ni, L.; Zhang, N.; Ma, R.; Qiu, G. Advanced electrocatalytic performance of Ni-based materials for oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 341–349.  doi: 10.1021/acssuschemeng.8b03636

    65. [65]

      Tian, T.; Zheng, M.; Lin, J.; Meng, X.; Ding, Y. Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chem. Commun. 2019, 55, 1044–1047.  doi: 10.1039/C8CC08511K

    66. [66]

      Haber, J. A.; Cai, Y.; Jung, S.; Xiang, C.; Mitrovic, S.; Jin, J.; Bell, A. T.; Gregoire, J. M. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energ. Environ. Sci. 2014, 7, 682–688.  doi: 10.1039/C3EE43683G

    67. [67]

      Wang, Y.; Zhang, Y.; Liu, Z.; Xie, C.; Feng, S.; Liu, D.; Shao, M.; Wang, S. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Edit. 2017, 56, 5867–5871.  doi: 10.1002/anie.201701477

    68. [68]

      Xu, J.; Wang, M.; Yang, F.; Ju, X.; Jia, X. Self-supported porous Ni–Fe–W hydroxide nanosheets on carbon fiber: a highly efficient electrode for oxygen evolution reaction. Inorg. Chem. 2019, 58, 13037–13048.  doi: 10.1021/acs.inorgchem.9b01953

    69. [69]

      Chen, H.; Zhao, Q.; Gao, L.; Ran, J.; Hou, Y. Water-plasma assisted synthesis of oxygen-enriched Ni–Fe layered double hydroxide nanosheets for efficient oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 4247–4254.  doi: 10.1021/acssuschemeng.8b05953

    70. [70]

      Song, F.; Hu, X. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.  doi: 10.1021/ja5096733

    71. [71]

      Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.  doi: 10.1039/C5CC08845C

  • 加载中
    1. [1]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    2. [2]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    3. [3]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    6. [6]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    16. [16]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    17. [17]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    18. [18]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    19. [19]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    20. [20]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

Metrics
  • PDF Downloads(6)
  • Abstract views(420)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return