Citation: Jian-Feng LI, Li-Min LIAO. Structural Characterization and Retention Time Simulation of Allergenic Fragrances[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1753-1762. doi: 10.14102/j.cnki.0254–5861.2011–2727 shu

Structural Characterization and Retention Time Simulation of Allergenic Fragrances

  • Corresponding author: Li-Min LIAO, liaolimin523@126.com
  • Received Date: 4 January 2020
    Accepted Date: 12 February 2020

    Fund Project: the Youth Foundation of Sichuan Provincial Department of Education 18ZB0323

Figures(8)

  • By classifying non-hydrogen atoms of organic compounds, parametric dyeing, and establishing the relationship between non-hydrogen atoms, new structure descriptors were obtained. The structures of 48 common allergenic fragrance organic compounds were parametrically characterized. The multiple linear regression (MLR) and partial least-squares regression (PLS) methods were used to build two models of relationship between the compound structure and chromatographic retention time. The stability of the models was evaluated by the "leave-one-out" cross test, and the predictive ability of the models was tested using an external sample set. The correlation coefficients (R2) of the two models are 0.9791 and 0.9744, those (RCV2) of the cross test are 0.8542 and 0.7464, and those (Rtest2) of the external prediction are 0.9802 and 0.9367, indicating that the models built have good fitting ability, stability and external forecasting capabilities. The structural factors affecting the chromatographic retention time of the compounds were analyzed. The results show that the compound with more secondary carbon atoms may have larger chromatographic retention time (tR) value. This paper has certain reference value for the study on the relationship between the structures and properties of allergenic fragrance organic compounds.
  • 加载中
    1. [1]

      Cheng, Y.; Wang, C.; Xue, Y. M.; Chen, W.; Wang, X.; Bai, H.; Cai, T. P.; Hu, K. X. Determination of dicumarol and cyclocoumarol in cosmetics by HPLC/DAD. J. Anal. Test. 2008, 27, 1996–1999.

    2. [2]

      Xi, H. W.; Ma, Q.; Liu, Q.; Wang, Y.; Ding, L; Su, N.; Bai, H.; Wang, C. HPLC-MS/MS determination of nonylphenol in cosmetics. J. Instrumental Anal. 2010, 29, 46–50.

    3. [3]

      Jiang, J. H.; Chen, S.; Xie, J. X. Analysis of ten harmful fragrances in cosmetics by GC/FTIR. Chin. J. Health Lab. Technol. 2005, 15, 1415–1418.

    4. [4]

      Li, Z. Y.; Wei, S. W.; Zhu, Z. J.; Jin, J. L. Determination of odorous substances in textile by solvent extraction GC-MS. Chem. Anal. Meterage 2011, 20, 35–37.

    5. [5]

      Gu, J. H.; Pan, K.; Liu, Y.; Zhu, Z. H. Determination of eugenol in fragrant fabrics by GC/MS method. Chin. Dyeing Finishing 2014, 40, 40–45.

    6. [6]

      Gao, M. X.; Wang, X. Y.; Gong, Y.; Wang, H.; Liao, Q. Detection of nonanal aromatic in coated fabrics by headspace gas chromatography-mass spectrometry. Anal. Instr. 2011, 42, 32–35.

    7. [7]

      Wu, X. H.; Zhu, R. Z.; Lu, S. M.; Wang, K.; Meng Z. J.; Mou, D. R.; Miao, M. M. UHPLC-MS/MS determination of coumarin in essence. Phys. Test Chem. Anal. Part B: Chem. Anal. 2000, 5, 1407–1400.

    8. [8]

      Wei, B. W.; Dai, X. W.; Yang, L.; Yang, R. J. Determination of fragrance allergens in toys by gas chromatography-ion trap mass spectrometry. Enciron. Chem. 2013, 32, 2406–2410.

    9. [9]

      Chen, L. Q.; Lin, Z. H.; Xing, Y. N.; Feng, A. H.; Wang, X.; Chen, Z. Y. Determination of fragrance allergens in toys by gas chromatography-mass spectrometry. Chin. J. Anal. Lab. 2014, 33, 1171–1176.

    10. [10]

      Li, H. Y.; Bai, H.; Lv, Q.; Li, P.; Wang, X.; Guo, X. Y.; Zhang, Q. A method for fast screening of allergenic fragrance substance in plushtoys. Chin. J. Anal. Chem. 2013, 41, 1518–1525.

    11. [11]

      Baviskar, B. A.; Deore, S. L.; Alone, S. 2D QSAR study on saponins of pulsatilla koreana as an anticancer agent. Pharm. Commun. 2019, 9, 2–6.

    12. [12]

      Abdel-Aziz, H. A.; Eldehna, W. M.; Fares, M.; Al-Rashood, S. T. A.; Al-Rashood, K. A.; Abdel-Aziz, M. M.; Soliman, D. H. Synthesis, biological evaluation and 2D-QSAR study of halophenyl bis-hydrazones as antimicrobial and, antitubercular agents. Int. J. Mol. Sci. 2015, 16, 8719–8743.  doi: 10.3390/ijms16048719

    13. [13]

      Khan, K.; Khan, P. M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, M.; Lombardo, A.; Roy, K.; Benfenati, E. QSAR modeling of daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere 2019, 229, 8–17.  doi: 10.1016/j.chemosphere.2019.04.204

    14. [14]

      Yu, W.; He, H. M.; Feng, C. J. QSAR models for the inhibitory enzyme activities of triazinyl-oxadiazolyl-pyrazole derivatives. Chemistry 2018, 81, 636–640.  doi: 10.7524/j.issn.0254-6108.2017102301

    15. [15]

      Cai, W. P.; Wei, X. C.; Zheng, C.; He, L.; Zhao, W. Z.; Zheng, X. A 3D-QSAR model of the tyrosinase inhibitory activity of curcumin analogues. Mod. Food Sci. Technol. 2017, 33, 41–50.

    16. [16]

      Kaur, M.; Silakari, O. Ligand-based and e-pharmacophore modeling, 3D-QSAR and hierarchical virtual screening to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3). J. Biomol. Struct. Dyn. 2017, 35, 1–18.  doi: 10.1080/07391102.2015.1136896

    17. [17]

      Chen, Y. Z.; Fan, X. J.; Zhang, H.; Liang, G. Z.; Liu, B. G. 3D-QSAR and interaction mechanism of flavonoids as aldose reductase inhibitors based on topomer Comfa and surflex-dock. J. Henan Univ. Technol. (Nat. Sci. Ed. ) 2018, 39, 91–96.

    18. [18]

      Misra, S.; Singh, H.; Kim, K.; Perez-Sanchez, H. S.; Kim, M.; Kumar, S.; Yadav, D. K.; Jang, C.; Choi, E. H.; Mancera, R. L.; Sharma, P. Studies of the benzopyran class of selective COX-2 inhibitors using 3D-QSAR and molecular docking. Arch. Pharmacal Res. 2018, 41, 1178–1189  doi: 10.1007/s12272-017-0945-7

    19. [19]

      Cui, S. H.; Niu, Z. Y.; Zhang, X. M.; Qin, L. Y.; Luo, X. Determination of 48 fragrance allergens in plastic toys by gas chromatography-mass spectrometry. J. Chin. Mass Spectrom. Soc. 2016, 37, 163–172.

    20. [20]

      Li, J. F.; Xie, Y. H.; Lei, Y. H. Study on relationship of structure and change in heat capacity for some polymers. Compu. Appl. Chem. 2016, 33, 833–837.
       

    21. [21]

      Li, J. F. Study on acute toxicity for halogenated phenols by using molecular vertex electronegativity interaction vector. Comput. Appl. Chem. 2015, 32, 1399–1403.

    22. [22]

      Liao, L. M. Research on structure-retention index relationship of aldehydes and ketones. Chem. Res. Appl. 2015, 27, 617–623.

    23. [23]

      Liao, L. M.; Huang, X.; Lei, G. D. Structural characterization and octanol/water partition coefficient (LogP) prediction for oxygen-containing organic compounds. Chin. J. Struct. Chem. 2017, 36, 1243–1250.

    24. [24]

      Qin, Z. L. A new connectivity index for QSPR/QSAR study of alcohol. J. Xuzhou Normal Univ. (Nat. Sci Ed. ) 2001, 19, 50–52.

    25. [25]

      Du, X. H. Predicting the lgKow of PCDDs using novel topological parameter. J. Wuhan Univ. Technol. 2007, 29, 40–44.
       

    26. [26]

      Chen, Y. Prediction of aqueous solubility, hydrophobic parameter for esters and ketones with novel valence connectivity index. J. Nanjing Univ. Technol. 2005, 27, 41–43.

    27. [27]

      Xu, Qi; Fan, L. L.; Xu, J. A simple 2D-QSPR model for the prediction of setschenow constants of organic compounds. Maced. J. Chem. Chem. Eng. 2016, 35, 53–62.

    28. [28]

      Gramatica, P.; Pilutti, P.; Papa, E. A tool for the assessment of VOC degradability by tropospheric oxidants starting from chemical structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1794–1802.

    29. [29]

      Andersson, P. M.; Sjstrom, M.; Lundstedt, T. Preprocessing peptides sequences for multivariate sequence-property analysis. Chemom. Intell. Lab. Syst. 1998, 42, 41–50.

    30. [30]

      Liao, L. M.; Li, J. F.; Qing, D. H.; Lei, G. D. Structural characterization and retention time prediction for components of essential oil of meconopsis integrifolia flowers. Chin. J. Struct. Chem. 2010, 29, 1638–1645.

    31. [31]

      Liao, L. M.; Zhu, J.; Li, J. F.; Lei, G. D. QSRR study on components of styrax japonicus sieb flowers using improved molecular electronegativity-distance vector (I-MEDV). Chin. J. Struct. Chem. 2011, 30, 105–110.

    32. [32]

      Zhu, W. P.; Mei, H.; Shu, M.; Liao, L. M.; Yang, J.; Li, Z. L. Structural characterization of some components from essential oils of rosa banksiae ait for estimation and prediction of their linear retention index and retention times. Chin. J. Chin. Mater. Med. 2008, 33, 609–611.

  • 加载中
    1. [1]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    2. [2]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    3. [3]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    4. [4]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    5. [5]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    6. [6]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    7. [7]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    8. [8]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    9. [9]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    12. [12]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    13. [13]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    14. [14]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    15. [15]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    16. [16]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    17. [17]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    18. [18]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    19. [19]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    20. [20]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

Metrics
  • PDF Downloads(1)
  • Abstract views(296)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return