Citation: Quan-Dang GAO, E YANG. The First-principles Study on the Rectification of Molecular Junctions Based on the Alkyl-chain-modified [2, 5΄]Bipyrimidinyl(biphenyl isocyanide)gold(I)[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1763-1769. doi: 10.14102/j.cnki.0254–5861.2011–2690 shu

The First-principles Study on the Rectification of Molecular Junctions Based on the Alkyl-chain-modified [2, 5΄]Bipyrimidinyl(biphenyl isocyanide)gold(I)

  • Corresponding author: E YANG, yangeli66@fjnu.edu.cn
  • Received Date: 9 December 2019
    Accepted Date: 10 February 2020

    Fund Project: the National Natural Science Foundation of China 21401023

Figures(5)

  • Using density functional theory (DFT) combined with nonequilibrium Green΄s function investigates the electron-transport properties of several molecular junctions based on the [2, 5΄]bipyrimidinyl(biphenyl isocyanide)gold(I) molecule (BPM-Au(I)CN-BP), which is modified by one to three alkyl groups forming BPM-Au(I)CN-BP(CH2)n. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-BPM-Au(I)CN-BP-S/Au molecular junction can be regulated by introducing alkyl chain. The M1 molecular junction exhibits the best rectifying effect. Its maximum rectifying ratio is 2109, which is about 150 times more than that of the molecular junction based on the original M. Moreover, all the systems modified by alkyl group have obvious negative differential resistance behavior (NDR). The current-voltage (I-V) curves of all the systems in this work are illustrated by transmission spectra.
  • 加载中
    1. [1]

      Wong, H.; Iwai, H. The road to miniaturization. Phys. World 2005, 9, 40−42.

    2. [2]

      Moore, G. E. Cramming more components onto integrated circuits. Electron. 1965, 8, 114−117.

    3. [3]

      Feynman, R. P. There΄s plenty of room at the bottom. Eng. Sci. 1960, 5, 22−36.

    4. [4]

      Chen, Z.; Zhang, Y.; Guo, Z.; Lin, L.; Yang, E.; Ling, Q. The first principle study on the rectification of molecular junctions based on the alkyl-chain-modified phenyl benzothiophene derivative. Chin. J. Struct. Chem. 2018, 7, 1037−1044.

    5. [5]

      Sun, Y.; Chen, S.; Chen, X.; Xu, Y.; Zhang, S.; Ou, Y.; Yang, G.; Li, H. A highly selective and recyclable NO-responsive nanochannel based on a spiroring opening-closing reaction strategy. Nat. Commun. 2019, 10, 1323−1330.  doi: 10.1038/s41467-019-09163-4

    6. [6]

      Wang, M.; Meng, H.; Wang, D.; Yin, Y.; Stroeve, P.; Zhang, Y.; Sheng, Z.; Chen, B.; Zhan, K.; Huo, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 11, 1805130−9.

    7. [7]

      Metzger, R. M. Unimolecular electrical rectifiers. Chem. Rev. 2003, 9, 3803−3834.

    8. [8]

      Kubatkin, S.; Danilov, A.; Hjort, M.; Cornil, J.; Brédas, J. L.; Stuhr-Hansen, N.; Hedegård, P.; Bjórnholm, T. Single-electron transistor of a single organic molecule with access to several redox states. Nature 2003, 6956, 698−701.

    9. [9]

      Li, J.; Yang, Z.; Xu, L.; Yang, Y.; Liu, X. Robust negative differential resistance and abnormal magnetoresistance effects in heteroatom-substituted zigzag c-graphyne nanoribbon homojunctions. J. Mater. Chem. C 2019, 7, 1359−1369.  doi: 10.1039/C8TC05240A

    10. [10]

      Joshi, A.; Ramachandran, C. N. High-bias negative differential resistance effect in pure, doped and co-doped carbon nanotubes connected to boron nitride nanotubes. Phys. E: Amsterdam, Neth. 2019, 113, 1−7.  doi: 10.1016/j.physe.2019.04.021

    11. [11]

      Wei, M.; Fu, X.; Wang, Z.; Hu, G.; Li, Z.; Wang, C.; Zhang, G. Bias and molecular-length dependent odd-even effect of rectification in 4΄-methyl-2΄-bipyridyl-terminated n-alkanethiolate single-molecule diodes. J. Mater. Chem. C 2019, 29, 9000−9007.

    12. [12]

      Tanaka, Y.; Kiguchi, M.; Akita, M. Inorganic and organometallic molecular wires for single-molecule devices. Chem. -Eur. J. 2017, 20, 4741−4749.

    13. [13]

      Song, A. M.; Lorke, A.; Kriele, A.; Kotthaus, J. P.; Wegscheider, W.; Bichler, M. Nonlinear electron transport in an asymmetric microjunction: a ballistic rectifier. Phys. Rev. Lett. 1998, 17, 3831−3834.

    14. [14]

      Deng, Y.; Chen, S.; Zeng, Y.; Zhou, W.; Chen, K. Large spin rectifying and high-efficiency spin-filtering in superior molecular junction. Org. Electron. 2017, 50, 184−190.  doi: 10.1016/j.orgel.2017.07.046

    15. [15]

      Yuan, S.; Dai, C.; Weng, J.; Mei, Q.; Ling, Q. Wang, L.; Huang, W. Theoretical studies of electron transport in thiophene dimer: effects of substituent group and heteroatom. J. Phys. Chem. A 2011, 17, 4535−4546.

    16. [16]

      Kala, C. P.; Thiruvadigal, D. J. First-principles study of electron transport in azulene molecular junction: effect of electrode material on electrical rectification behavior. J. Comput. Electron. 2018, 2, 580−585.

    17. [17]

      Garg, K.; Majumder, C.; Gupta, S. K.; Aswal, D. K.; Nayak, S. K.; Chattopadhyay, S. A novel design for porphyrin based D–s–A systems as molecular rectifiers. Chem. Sci. 2016, 2, 1548−1557.

    18. [18]

      Zhao, P. J.; Cui, H. L.; Woolard, D.; Jensen, K. J.; Buot, F. A. Simulation of resonant tunneling structures: origin of the I-V hysteresis and plateau-like structure. J. Appl. Phys. 2000, 3. 1337−1349.

    19. [19]

      Seki, T.; Kurenuma, S.; Ito, H. Luminescence color-tuning through polymorph doping: preparation of a white-emitting solid from a single gold(I)-isocyanide complex by simple precipitation. Chem. -Eur. J. 2013, 48, 16214−16220.

    20. [20]

      Sathyanarayana, A.; Nakamura, S.; Hisano, K.; Tsutsumi, O.; Srinivas, K.; Prabusankar, G. Controlling the solid-state luminescence of gold(I) N-heterocyclic carbene complexes through changes in the structure of molecular aggregates. Sci. Chi. Chem. 2018, 8, 957−965.

    21. [21]

      Yuan, S.; Wang, S.; Mei, Q.; Lin, Q.; Wang, L.; Huang, W. First-principles study of rectification in bis-2-(5-ethynylthienyl) ethyne molecular junctions. J. Phys. Chem. A 2011, 32, 9033−9042.

    22. [22]

      George, C. B.; Ratner, M. A.; Lambert, J. B. Strong conductance variation in conformationally constrained oligosilane tunnel junctions. J. Phys. Chem. A 2009, 16, 3876−3880.

    23. [23]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hatchian, P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D. 01. Gaussian, Inc. : Wallingford CT 2004.

    24. [24]

      Becke, A. D. A new mixing of hartree-fock and local density functional theories. J. Chem. Phys. 1993, 2, 1372−1377.

    25. [25]

      Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.  doi: 10.1103/PhysRevB.37.785

    26. [26]

      Yin, X.; Li, Y.; Zhang, Y.; Li, P.; Zhao, J. Theoretical analysis of geometry-correlated conductivity of molecular wire. Chem. Phys. Lett. 2006, 422, 111−116.  doi: 10.1016/j.cplett.2006.02.020

    27. [27]

      Brandbyge, M.; Mozos, J.; Ordejon, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401−17.

    28. [28]

      ATK. Trial Version13.8. 0. QuantumWise A/S 2013 (www. quantumwise. com ).

    29. [29]

      Hu, Y.; Zhu, Y.; Gao, H.; Guo, H. Conductance of an ensemble of molecular wires: a statistical analysis. Phys. Rev. Lett. 2005, 95, 156803−4.

    30. [30]

      Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys: Condens. Matter. 2002, 14, 2745−2779.

    31. [31]

      Coben, R.; Stokbro, K.; Martin, J. M. L.; Ratner, M. A. Charge transport in conjugated aromatic molecular junctions: molecular conjugation and molecule-electrode coupling. J. Phy. Chem. C 2007, 111, 14893−14902.

  • 加载中
    1. [1]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    2. [2]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    9. [9]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    10. [10]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    11. [11]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    12. [12]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    13. [13]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    16. [16]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    17. [17]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    18. [18]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    19. [19]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    20. [20]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

Metrics
  • PDF Downloads(2)
  • Abstract views(354)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return