Citation: Si-Yang CHEN, Yang-Yang GUO, Dan WU, Bi-Qing HU, Jie PANG. Effects of Poly(Galacturonic Acid) on the Properties and Structure of Konjac Glucomannan Aerogel[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1817-1823. doi: 10.14102/j.cnki.0254–5861.2011–2681 shu

Effects of Poly(Galacturonic Acid) on the Properties and Structure of Konjac Glucomannan Aerogel

  • Corresponding author: Jie PANG, pang3721941@163.com
  • Received Date: 2 December 2019
    Accepted Date: 15 February 2020

    Fund Project: the National Natural Science Foundation of China 31772045

Figures(7)

  • A novel konjac glucomannan (KGM)/poly(galacturonic acid) (PGuA) mixed aerogel (KGM/PGuA) was prepared via a vacuum freeze-drying method, and its interaction mechanism was studied. The rheology results showed that KGM/PGuA mixed gels are typical non-Newtonian pseudoplastic fluids, and PGuA increased the viscosity of the composite aerogel and strengthened the molecular entanglement between KGM and PGuA molecules. The structures of KGM/PGuA aerogels were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the intermolecular interactions were mainly hydrogen bonding. Dense and uniform porous structures were found in the aerogel microstructures. All these findings indicate that PGuA has the effect of enhancing the KGM gel structure, and KGM/PGuA gels with porous structures might be potential materials for use in food and biomedical areas for loading active materials.
  • 加载中
    1. [1]

      Ngo, H. V.; Tran, P. H. L.; Lee, B. J.; Tran, T. T. D. Development of film-forming gel containing nanoparticles for transdermal drug delivery. Nanotechnology 2019, 30, 415102−15.  doi: 10.1088/1361-6528/ab2e29

    2. [2]

      Xu, Y.; Zhang, J. N.; Liu, X. Y.; Huo, P. C.; Zhang, Y.; Chen, H.; Tian, Q. F.; Zhang, N. MMP-2-responsive gelatin nanoparticles for synergistic tumor therapy. Pharm. Dev. Technol. 2019, 24, 1002−1013.  doi: 10.1080/10837450.2019.1621899

    3. [3]

      Barclay, T. G.; Day, C. M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohyd. Polym. 2019, 221, 94−112.  doi: 10.1016/j.carbpol.2019.05.067

    4. [4]

      Moshkbar, H.; Arsalani, N.; Ghadimi, L. S. Synthesis of chitosan/gelatin granule containing amine derivated octa(ammonium chloride) substituted polyhedral oligomeric silsesquioxane and investigating its application as a drug carrier. Int. J. Polym. Mater. Po. 2019, 68, 836−843.  doi: 10.1080/00914037.2018.1517345

    5. [5]

      Evranos, B.; Aycan, D.; Alemdar, N. Production of ciprofloxacin loaded chitosan/gelatin/bone ash wound dressing with improved mechanical properties. Carbohyd. Polym. 2019, 222, 115007−7.  doi: 10.1016/j.carbpol.2019.115007

    6. [6]

      Boroojeni, F. R.; Mashayekhan, S.; Abbaszadeh, H. A. The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold. Iran J. Pharm. Res. 2019, 18, 111−124.

    7. [7]

      Yang, Y. F.; Meng, F. Y.; Li, X. H.; Wu, N. N.; Deng, Y. H.; Wei, L. Y.; Zeng, X. P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechno. 2019, 19, 7517−7525.  doi: 10.1166/jnn.2019.16768

    8. [8]

      Ambrosio, J. A. R.; Pinto, B. C. D.; Godoy, D. D.; Carvalho, J. A.; Abreu, A. D.; da Silva, B. G. M.; Leonel, L. D.; Costa, M. S.; Beltrame, M.; Simioni, A. R. Gelatin nanoparticles loaded methylene blue as a candidate for photodynamic antimicrobial chemotherapy applications in Candida albicans growth. J. Biomat. Sci. Polym E. 2019, 30, 1356−1373.  doi: 10.1080/09205063.2019.1632615

    9. [9]

      Riyajan, S. A. Development of a novel pH-sensitive polymer matrix for drug encapsulation from maleated poly(vinyl alcohol) grafted with polyacrylamide. Polym. Bull. 2019, 76, 4585−4611.  doi: 10.1007/s00289-018-2615-4

    10. [10]

      Jie, L. Y.; Lang, D.; Kang, X. Q.; Yang, Z. X.; Du, Y. Z.; Ying, X. Y. Superparamagnetic iron oxide nanoparticles/doxorubicin-loaded starch-octanoic micelles for targeted tumor therapy. J. Nanosci. Nanotechno. 2019, 19, 5456−5462.  doi: 10.1166/jnn.2019.16548

    11. [11]

      Ting, G. L.; Chan, Y. Y.; Chaw, C. S. Mixed solvent system as binder for the production of silicified microcrystalline cellulose-based pellets. J. Appl. Polym. Sci. 2019, 136, 47924−9.  doi: 10.1002/app.47924

    12. [12]

      Behera, S. S.; Ray, R. C. Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam. Amorphophallus konjac K. Koch: A review. Food Rev. Int. 2017, 33, 22−43.  doi: 10.1080/87559129.2015.1137310

    13. [13]

      Huang, Y. C.; Yang, C. Y.; Chu, H. W.; Wu, W. C.; Tsai, J. S. Effect of alkali on konjac glucomannan film and its application on wound healing (vol 22, pg 737, 2015). Cellulose 2018, 25, 6819−6821.  doi: 10.1007/s10570-018-2040-8

    14. [14]

      Neto, R. J. G.; Genevro, G. M.; Paulo, L. D.; Lopes, P. S.; de Moraes, M. A.; Beppu, M. M. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohyd. Polym. 2019, 212, 59−66.  doi: 10.1016/j.carbpol.2019.02.017

    15. [15]

      Song, C. Z.; Lv, Y. K.; Qian, K. Y.; Chen, Y. L.; Qian, X. Preparation of konjac glucomannan-borax hydrogels with good self-healing property and pH-responsive behavior. J. Polym. Res. 2019, 26, 52−9.  doi: 10.1007/s10965-019-1702-z

    16. [16]

      Wang, Y. X.; Chen, X.; Kuang, Y.; Xiao, M.; Su, Y. H.; Jiang, F. T. Microstructure and filtration performance of konjac glucomannan-based aerogels strengthened by wheat straw. Int. J. Low-Carbon. Tec. 2018, 13, 67−75.

    17. [17]

      Behera, S. S.; Ray, R. C. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J. Biol. Macromo. 2016, l92, 942-956.

    18. [18]

      Yuan, Y.; Yan, Z.; Mu, R. J.; Wang, L.; Gong, J. N.; Hong, X.; Haruna, M. H.; Pang, J. The effects of graphene oxide on the properties and drug delivery of konjac glucomannan hydrogel. J. Appl. Polym. Sci. 2017, 134, 45327−8.  doi: 10.1002/app.45327

    19. [19]

      Yuan, Y.; Yang, D.; Mei, G.; Hong, X.; Wu, J.; Zheng, J.; Pang, J.; Yan, Z. Preparation of konjac glucomannan-based zeolitic imidazolate framework-8 composite aerogels with high adsorptive capacity of ciprofloxacin from water. Colloid Surf. A-Physicochem. Eng. Asp. 2018, 544, 187−195.  doi: 10.1016/j.colsurfa.2018.01.042

    20. [20]

      Yuan, Y.; Xu, X. W.; Gong, J. N.; Mu, R. J.; Li, Y. Z.; Wu, C. H.; Pang, J. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int. J. Biol. Macromol. 2019, 131, 209−217.  doi: 10.1016/j.ijbiomac.2019.03.061

    21. [21]

      Gupta, D.; Jassal, M.; Agrawal, A. K. Solution properties and electrospinning of poly(galacturonic acid) nanofibers. Carbohyd. Polym. 2019, 212, 102−111.  doi: 10.1016/j.carbpol.2019.02.023

    22. [22]

      Abbott, D. W.; Hrynuik, S.; Boraston, A. B. Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica. J. Mol. Biol. 2007, 367, 1023−1033.  doi: 10.1016/j.jmb.2007.01.030

    23. [23]

      Liu, X. N.; Liu, S. C.; Xi, H. T.; Xu, J. J.; Deng, D. W.; Huang, G. H. Effects of soluble dietary fiber on the crystallinity, pasting, rheological, and morphological properties of corn resistant starch. Lwt-Food Sci. Technol. 2019, 111, 632−639.  doi: 10.1016/j.lwt.2019.01.059

    24. [24]

      Liu, J. X.; Xu, B. J. A comparative study on texture, gelatinisation, retrogradation and potential food application of binary gels made from selected starches and edible gums. Food Chem. 2019, 296, 100−108.  doi: 10.1016/j.foodchem.2019.05.193

    25. [25]

      Zhang, L. M.; Liu, Z. L.; Han, X. B.; Sun, Y.; Wang, X. Y. Effect of ethanol content on rheology of film-forming solutions and properties of zein/chitosan film. Int. J. Biol. Macromol. 2019, 134, 807−814.  doi: 10.1016/j.ijbiomac.2019.05.085

    26. [26]

      Li, J. W.; Ma, J. W.; Chen, S. J.; He, J. M.; Huang, Y. D. Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation. Food Hydrocolloid. 2018, 82, 363−369.  doi: 10.1016/j.foodhyd.2018.04.022

    27. [27]

      Hu, Y.; Tian, J.; Zou, J.; Yuan, X. Q.; Li, J.; Liang, H. S.; Zhan, F. C.; Li, B. Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and kappa-carrageenan blends. Int. J. Biol. Macromol 2019, 123, 1165−1171.  doi: 10.1016/j.ijbiomac.2018.10.190

    28. [28]

      Wang, L.; Mu, R. J.; Yuan, Y.; Gong, J. N.; Ni, Y. S.; Wang, W. H.; Pang, J. Novel nanofiber membrane fabrication from konjac glucomannan and polydopamine via electrospinning method. J. Sol-Gel Sci. Techn. 2018, 85, 253−258.  doi: 10.1007/s10971-017-4559-9

    29. [29]

      Wurfel, H.; Kayser, M.; Heinze, T. Non-aqueous solvent for efficient dissolution of polygalacturonic acid. Carbohyd. Polym. 2019, 207, 791−795.  doi: 10.1016/j.carbpol.2018.12.036

    30. [30]

      Mishra, R. K.; Datt, M.; Banthia, A. K. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. Aaps. Pharmscitech. 2008, 9, 395−403.  doi: 10.1208/s12249-008-9048-6

  • 加载中
    1. [1]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    2. [2]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    3. [3]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    7. [7]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    8. [8]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    9. [9]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    10. [10]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    11. [11]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    12. [12]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(1)
  • Abstract views(384)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return