Citation: Fu-Xiang WANG, Guo-Jian REN, Rui-Jing TIAN, Li-Juan FENG, Yong-Hang YANG, Yong-Yan DENG, Qin-He PAN. Pillared-layer MOF Based on Template-directed Method: Synthesis, Structure and Proton Conduction Properties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1337-1342. doi: 10.14102/j.cnki.0254–5861.2011–2609 shu

Pillared-layer MOF Based on Template-directed Method: Synthesis, Structure and Proton Conduction Properties

Figures(6)

  • By using Co(NH3)63+ as the template, a new complex HNU-38 was synthesized under hydrothermal reaction through the adoption of H3BTC and Cl- as the ligands (H3BTC = 1,3,5-benzenetricarboxylic acid). HNU-38 crystallized in the monoclinic system, P21/c space group with a = 9.9696(3), b = 17.0580(6), c = 16.5263(6) Å, β = 100.400(2)º, Z = 4, V = 2764.31(16) Å3, Mr = 883.63, Dc = 2.123 g/cm3, F(000) = 1736, S = 0.920, R = 0.0358 and wR = 0.0838 (I > 2σ(I)). In HNU-38, the Cd2+ and BTC3- were linked together to form layers with Cl- serving as the pillar. It should be noted that (H2O)n chains were found in the channels and play a co-templating role along with the Co(NH3)63+ cations in HNU-38, and the proton conduction properties were investigated.
  • 加载中
    1. [1]

      Bao, Z.; Xie, D.; Chang, G.; Wu, H.; Li, L.; Zhou, W.; Wang, H.; Zhang, Z.; Xing, H.; Yang, Q.; Zaworotko, M. J.; Ren, Q.; Chen, B. Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 2018, 140, 4596−4603.  doi: 10.1021/jacs.7b13706

    2. [2]

      Sun, Y.; Wang, F.; Zhang, J. Synthesis of anionic metal-organic zeolites for selective gas adsorption and ion exchange. Inorg. Chem. 2019, 58, 4076−4079.  doi: 10.1021/acs.inorgchem.9b00261

    3. [3]

      Fu, H. R.; Yan, L. B.; Wu, N. T.; Ma, L. F.; Zang, S. Q. Dual-emission MOF⊃dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. J. Mater. Chem. A 2018, 6, 9183−9191.  doi: 10.1039/C8TA02857E

    4. [4]

      Tan, Y. X.; Wang, F.; Zhang, J. Design and synthesis of multifunctional metal-organic zeolites. Chem. Soc. Rev. 2018, 47, 2130−2144.  doi: 10.1039/C7CS00782E

    5. [5]

      Fang, Q. R.; Zhu, G. S.; Jin, Z.; Xue, M.; Wei, X.; Wang, D. J.; Qiu, S. L. A novel metal-organic framework with the diamondoid topology constructed from pentanuclear zinc-carboxylate clusters. Cryst. Growth Des. 2007, 7, 1035−1037.  doi: 10.1021/cg060829a

    6. [6]

      Li, M.; Yang, W.; Qiu, P.; Ren, G.; Li, C.; Chen, Z.; Wang, Y.; Pan, Q. Two efficient pH sensors based on heteronuclear metal-organic frameworks. J. Lumin. 2019, 205, 380−384.  doi: 10.1016/j.jlumin.2018.09.056

    7. [7]

      Fang, Q.; Zhu, G.; Xue, M.; Sun, J.; Tian, G.; Wu, G.; Qiu, S. Influence of organic bases on constructing 3D photoluminescent open metal-organic polymeric frameworks. Dalton Trans. 2004, 14, 2202−2207.

    8. [8]

      Zhao, Y.; Yang, X. G.; Lu, X. M.; Yang, C. D.; Fan, N. N.; Yang, Z. T.; Wang, L. Y.; Ma, L. F. {Zn6} cluster based metal-organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem. 2019, 58, 6215−6221.  doi: 10.1021/acs.inorgchem.9b00450

    9. [9]

      Zhao, Y.; Wang, L.; Fan, N. N.; Han, M. L.; Yang, G. P.; Ma, L. F. Porous Zn(Ⅱ)-based metal-organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des. 2018, 18, 7114−7121.  doi: 10.1021/acs.cgd.8b01290

    10. [10]

      Li, M.; Ren, G.; Wang, F.; Li, Z.; Yang, W.; Gu, D.; Wang, Y.; Zhu, G.; Pan, Q. Two metal-organic zeolites for highly sensitive and selective sensing of Tb3+. Inorg. Chem. Front. 2019, 6, 1129−1134.  doi: 10.1039/C8QI01406J

    11. [11]

      Zhang, Z.; Zaworotko, M. J. Template-directed synthesis of metal-organic materials. Chem. Soc. Rev. 2014, 43, 5444−5455.  doi: 10.1039/C4CS00075G

    12. [12]

      Pan, Q. H.; Tian, R. J.; Liu, S. J.; Wu, Q. H.; Zhu, Y. Y.; Chen, Q.; Ren, X. Y.; Hu, T. L. [Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O: a 5-connected sqp topological metal-organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster. Chin. Chem. Lett. 2013, 24, 861−865.  doi: 10.1016/j.cclet.2013.06.025

    13. [13]

      Pan, Q. H.; Chen, Q.; Song, W. C.; Hu, T. L.; Bu, X. H. Template-directed synthesis of three new open-framework metal(Ⅱ) oxalates using Co(Ⅲ) complex as template. CrystEngComm. 2010, 12, 4198−4204.  doi: 10.1039/c002658a

    14. [14]

      Pan, Q. H.; Li, J. Y.; Chen, Q.; Han, Y. D.; Chang, Z.; Song, W. C.; Bu, X. H. |Co(en)3|1/3[In(ox)2]·3.5H2O: a zeolitic metal-organic framework templated by Co(en)3Cl3. Micropor. Mesopor. Mat. 2010, 132, 453−457.  doi: 10.1016/j.micromeso.2010.03.026

    15. [15]

      Tian, R. J.; Wang, F. X.; Du, C. Y.; Feng, L. J.; Liu, Y.; Zhang, C. L.; Pan, Q. H. Template-directed synthesis of three metal oxalates via 4-connected building units. Chem. Res. Chin. Uni. 2014, 30, 889−893.  doi: 10.1007/s40242-014-4178-8

    16. [16]

      Duan, C.; Wei, M.; Guo, D.; He, C.; Meng, Q. Crystal structures and properties of large protonated water clusters encapsulated by metal-organic frameworks. J. Am. Chem. Soc. 2010, 132, 3321−3330.  doi: 10.1021/ja907023c

    17. [17]

      Wei, M.; He, C.; Hua, W.; Duan, C.; Li, S.; Meng, Q. A large protonated water cluster H+(H2O)27 in a 3D metal-organic framework. J. Am. Chem. Soc. 2006, 128, 13318−13319.  doi: 10.1021/ja0611184

    18. [18]

      He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem., Int. Ed. 2018, 57, 4657−4662.  doi: 10.1002/anie.201801122

    19. [19]

      Li, Y. W.; Yan, H.; Hu, T. L.; Ma, H. Y.; Li, D. C.; Wang, S. N.; Yao, Q. X.; Dou, J. M.; Xu, J.; Bu, X. H. Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. Chem. Commun. 2017, 53, 2394−2397.  doi: 10.1039/C6CC09923H

    20. [20]

      O'Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675−702.  doi: 10.1021/cr200205j

    21. [21]

      Ye, Z. M.; He, C. T.; Xu, Y. T.; Krishna, R.; Xie, Y.; Zhou, D. D.; Zhou, H. L.; Zhang, J. P.; Chen, X. M. A new isomeric porous coordination framework showing single-crystal to single-crystal structural transformation and preferential adsorption of 1,3-butadiene from C4 hydrocarbons. Cryst. Growth Des. 2017, 17, 2166−2171.  doi: 10.1021/acs.cgd.7b00100

    22. [22]

      Li, P.; Vermeulen, N. A.; Gong, X.; Malliakas, C. D.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. Design and synthesis of a water-stable anionic uranium-based metal-organic framework (MOF) with ultra large pores. Angew. Chem., Int. Ed. 2016, 55, 10358−10362.  doi: 10.1002/anie.201605547

    23. [23]

      Ren, G. J.; Han, S. D.; Liu, Y. Q.; Hu, T. L.; Bu, X. H. Two six-connected MOFs with distinct architecture: synthesis, structure, adsorption, and magnetic properties. ChemPlusChem. 2016, 81, 775−779.  doi: 10.1002/cplu.201600092

    24. [24]

      Senthilkumar, S.; Goswami, R.; Obasi, N. L.; Neogi, S. Construction of pillar-layer metal-organic frameworks for CO2 adsorption under humid climate: high selectivity and sensitive detection of picric acid in water. ACS Sustainable Chem. Eng. 2017, 5, 11307−11315.  doi: 10.1021/acssuschemeng.7b02087

    25. [25]

      ZareKarizi, F.; Joharian, M.; Morsali, A. Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. J. Mater. Chem. A 2018, 6, 19288−19329.  doi: 10.1039/C8TA03306D

    26. [26]

      Yu, C.; Sun, X.; Zou, L.; Li, G.; Zhang, L.; Liu, Y. A pillar-layered Zn-LMOF with uncoordinated carboxylic acid sites: high performance for luminescence sensing Fe3+ and TNP. Inorg. Chem. 2019, 58, 4026−4032.  doi: 10.1021/acs.inorgchem.9b00204

    27. [27]

      Kang, H. X.; Fu, Y. Q.; Ju, F. Y.; Wang, Y. F.; Li, X. L.; Liu, G. Z. Crystal engineering of Co(Ⅱ) metal-organic frameworks based on the hydrolysis product of letrozole and coligands. Chin. J. Struct. Chem. 2019, 38, 1266−1274.

    28. [28]

      Burd, S. D.; Ma, S.; Perman, J. A.; Sikora, B. J.; Snurr, R. Q.; Thallapally, P. K.; Tian, J.; Wojtas, L.; Zaworotko, M. J. Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4'-bipyridine, bpy-2 = 1,2-bis(4-pyridyl)ethene). J. Am. Chem. Soc. 2012, 134, 3663−3666.  doi: 10.1021/ja211340t

    29. [29]

      Nugent, P.; Rhodus, V.; Pham, T.; Tudor, B.; Forrest, K.; Wojtas, L.; Spacea, B.; Zaworotko, M. J. Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution. Chem. Commun. 2013, 49, 1606−1608.  doi: 10.1039/c3cc37695h

    30. [30]

      Alduhaish, O.; Lin, R. B.; Wang, H.; Li, B.; Arman, H. D.; Hu, T. L.; Chen, B. Metal-organic framework with trifluoromethyl groups for selective C2H2 and CO2 adsorption. Cryst. Growth Des. 2018, 18, 4522−4527.  doi: 10.1021/acs.cgd.8b00506

    31. [31]

      Li, N.; Zhao, J.; Xu, L.; Zhang, Z.; Hung, L.; Liu, Y.; Lu, Y.; Liu, S. A 3D cadmium-vanadium bimetallic framework with luminescence properties. New J. Chem. 2017, 41, 6781−6784.  doi: 10.1039/C7NJ01258F

    32. [32]

      Song, J. F.; Wen, H. F.; Zhang, W.; Yao, R. C.; Zhou, R. S.; Xu X. Y. A novel -Pb–O–Pb–Cu–Cl- inorganic layer-based pillared-layer framework: synthesis, crystal structure and fluorescent property. Inorg. Chem. Commun. 2018, 95, 100−103.  doi: 10.1016/j.inoche.2018.07.017

    33. [33]

      Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen: Göttingen, Germany 1997.

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    6. [6]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    7. [7]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    12. [12]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    18. [18]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    19. [19]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    20. [20]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

Metrics
  • PDF Downloads(1)
  • Abstract views(354)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return